Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Примеры решения задач






 

Пример 1. Определите число молекул N, содержащихся в 1 кг гелия. Найдите массу m0 одного атома гелия.

Дано: m = 1 кг; М = 4·10-3 кг/моль. Найти: N; m0.

Решение: Число молекул в данной массе газа

, (1)

где n = m /М – количество молей вещества, М – молярная масса, m – масса газа, NА – число Авогадро.

Поскольку гелий – одноатомный газ, то число молекул равно числу атомов. Найдем искомое число атомов .

Для определения массы m0 одного атома массу газа разделим на число атомов в нём .

Ответ: N = 1, 5·1026; m0 = 6, 67·10–26 кг.

 

Пример 2. Считая водород в солнечной фотосфере (внешней видимой оболочке Солнца) идеальным газом, определите среднюю кинетическую энергию поступательного движения атомов водорода. Концентрация атомов водорода в фотосфере n = 1, 6∙ 1021 м–3, давление
Р = 1, 25∙ 102 Па.

Дано: n = 1, 6∙ 1021 м–3; Р = 1, 25∙ 102 Па. Найти: .

Решение: Связь между давлением идеального газа, концентрацией и средней кинетической энергиейтеплового движения частиц выражается основным уравнением молекулярно-кинетической теории:

, (1)

где – средняя кинетическая энергия поступательного движения атомов водорода.

Отсюда

. (2)

Следовательно, .

Ответ: = 1, 2∙ 10–19 Дж.

 

Пример 3. Найдите наиболее вероятную υ в, среднюю арифметическую и среднюю квадратичную скорости молекул водорода при температуре 27 oС.

Дано: t = 27 oC; Т = 300 К; МН2 = 2∙ 10-3 кг/моль. Найти: υ в; ; . Рис. 1

Решение: В газе, находящемся в состоянии равновесия, устанавливается некоторое стационарное, не меняющееся со временем распределение молекул по скоростям, которое подчиняется статистическому закону Дж. Максвелла.

Распределение Максвелла (рис. 1) показывает: какая доля d N(υ)/N общего числа молекул данного газа обладает скоростями в интервале от υ до υ +∆ υ.

Скорость υ в, которой соответствует максимум кривой распределения Максвелла, называют наиболее вероятной скоростью. Этой скоростью и близкой к ней при данной температуре обладает наибольшее число молекул

, (1)

где R – молярная газовая постоянная, Т – абсолютная температура, М – масса одного моля газа.

Рассчитываем uв: .

Средняя арифметическая скорость по определению равна отношению суммы скоростей всех молекул к числу молекул

. (2)

Из закона распределения Максвелла получаем следующую формулу для расчета :

. (3)

Следовательно, .

Если газ в объеме V содержит N молекул, движущихся со скоростями u1, u2,..., uN, то средняя квадратичная скорость равна

. (4)

Средняя квадратичная скорость определяет среднюю кинетическую энергию движения молекулы. Средняя кинетическая энергия поступательного движения связана с температурой Т формулой:

. (5)

С другой стороны равно

. (6)

Сравнивая формулы (5) и (6), находим

. (7)

Отсюда .

Ответ: υ в = 1, 58 км/с; = 1, 79 км/с; = 1, 94 км/с.

 

Пример 4. Считая водяной пар массой m = 180 г при температуре
t = 127 oС идеальным газом, определить: энергию, приходящуюся на одну степень свободы молекулы ; среднюю кинетическую энергию поступательного и среднюю кинетическую энергию вращательного движения одной молекулы водяного пара, а также кинетическую энергию W всех молекул водяного пара и его внутреннюю энергию U.

Дано: m = 180 г = 180∙ 10-3 кг; t = 127 oС; Т = 400 К; М = 18∙ 10-3 кг/моль. Найти: ; ; ; W; U.

Решение: По закону Больцмана энергия равномерно распределяется по степеням свободы и на одну степень свободы приходится энергия

, (1)

где k – постоянная Больцмана.

Отсюда .

Для идеальных одноатомных газов (атомарного кислорода, атомарного азота, атомарного водорода, гелия) учитываются только три степени поступательного движения (i = 3), а энергия вращательного движения равна нулю, как для материальных точек, размещённых на оси вращения. Для двухатомных газов (например, молекулярного кислорода, молекулярного водорода) учитываются три степени поступательного движения и две степени вращательного движения. Для газов, молекулы которых состоят из трёх и более атомов, учитываются три степени поступательного движения и три степени вращательного движения молекул.

Так как молекула водяного пара является трёхатомной, то обладает тремя степенями свободы поступательного движения и тремя степенями свободы вращательного движения.

Следовательно, средняя энергия поступательного движения одной молекулы водяного пара

. (2)

Произведя вычисления, получим:

.

Средняя кинетическая энергия вращательного движения одной молекулы водяного пара

. (3)

Отсюда .

Полная энергия одной молекулы водяного пара равна сумме энергий поступательного и вращательного движения:

. (4)

Поэтому .

Полная кинетическая энергия всех молекул водяного пара выражается соотношением:

. (5)

Если учесть, что число молекул N системы равно произведению постоянной Авогадро NA на количество вещества ν, то равенство (5) можно записать в виде:

. (6)

Отсюда .

По определению, внутренняя энергия идеального газа равна полной кинетической энергии всех его молекул, то есть U = 99, 7 Дж.

Ответ: = 2, 76∙ 10-21 Дж; = 8, 28·10-21 Дж; = 8, 28·10-21 Дж; W = U = 99, 7 кДж.

 

Пример 5. Определить плотность смеси газов, состоящей из
ν 1 = 5 моль азота и ν 2 = 10 моль кислорода. Смесь содержится в баллоне при температуре t = 17 oС и давлении Рсм = 0, 25 МПа.

Дано: ν 1 = 5 моль; ν 2 = 10 моль; t = 17 oС; Т = 290 К; Рсм = 0, 25 МПа= 2, 5·105 Па. Найти: ρ.

Решение: Согласно определению плотность газовой смеси

ρ = (m1 + m2) / V, (1)

где m1 и m2 – массы азота и кислорода соответственно, V – объём баллона.

Выразим массу каждого газа через количество вещества и молярную массу:

m1 = ν 1M1, m2 = ν 2M2. (2)

Для определения объёма смеси в баллоне воспользуемся уравнением Клапейрона–Менделеева

РсмV = (m1/M1+ m2/M2) RT = (ν 1 + ν 2) RT,

где R – молярная газовая постоянная; Т – термодинамическая температура.

Тогда

V = (ν 1 + ν 2) RT / Рсм. (3)

Подставив выражения (2) и (3) в (1), получим

. (4)

Вычислим искомую плотность:

.

Ответ: r = 3, 18 кг/м3.

 

Пример 6. Определить: 1) среднюю длину свободного пробега и 2) среднюю частоту столкновений молекул воздуха при температуре t = 0 °С и давлении р = 1, 01 Па. Принять эффективный диаметр молекулы воздуха равным d = 2, 9·10-8 см.

Дано: t = 0 оС; Т = 273 К; р = 1, 01 Па; d = 2, 9·10-8 см = 2, 9·10-10 м. Найти: ; .

Решение: Средняя длина свободного пробега молекулы выражается формулой

, (1)

где п – концентрация молекул (отношение числа молекул к объёму газа, в котором они заключены).

Для определения неизвестной концентрации молекул воспользуемся основным уравнением молекулярно-кинетической теории и определением средней энергии поступательного движения молекулы газа :

, (2)

, (3)

где р – давление газа, – средняя энергия поступательного движения молекулы газа, k – постоянная Больцмана, Т – термодинамическая температура газа.

С учётом уравнений (2) и (3) формула (1) примет вид

. (4)

Отсюда искомая длина свободного пробега молекулы

.

Средняя частота столкновений молекул газа связана с длиной свободного пробега соотношением

, (5)

где – средняя арифметическая скорость молекул.

Её можно определить по формуле

, (6)

где R – молярная газовая постоянная, М – молярная масса воздуха.

Подставив (6) в (5), находим

. (7)

Вычислим частоту столкновений

.

Ответ: = 1 см; = 4, 46·104 с-1.

Пример 7. Определить, при каком градиенте плотности углекислого газа через каждый квадратный метр поверхности почвы продиффундирует в атмосферу в течение t = 1 час газ массой m = 720 мг, если коэффициент диффузии D = 0, 04 см2/с.

Дано: S = 1 м2; m = 720 мг = 72·10-5 кг; D = 0, 04 см2/с = 4·10-6 м2/с; t = 1 час = 3600 с. Найти: ∆ ρ /∆ x.

Решение: Масса газа, переносимая в результате диффузии, определяется законом Фика:

, (1)

где D – коэффициент диффузии; ∆ ρ /∆ x – градиент плотности, т.е. изменение плотности, приходящееся на 1 м толщины слоя почвы;
S – площадь поверхности слоя; t – длительность процесса.

Из (1) выразим искомый градиент плотности

. (2)

Произведём вычисления .

Отрицательное значение градиента плотности соответствует сущности процесса диффузии: зависимость плотности от расстояния в направлении движения диффундирующей массы выражается убывающей функцией, градиент которой – отрицательная величина.

Ответ: ∆ ρ /∆ x = –0, 05 кг/м4.

Пример 8. Определить количество теплоты, теряемое через бетонные стены склада площадью S = 50 м2 за время t = 1 мин, если в помещении температура стены t1 = 15 °C, а снаружи t2 = –10 °С. Толщина стен ∆ x = 25 см.

Дано: S = 50 м2; t = 1 мин = 60 с; t1 = 15 °C; Т = 288 К; t2 = –10 °С; Т = 263 К; ∆ x = 25 см = 25·10-2 м. Найти: Q.

Решение: Количество теплоты, передаваемое за счёт теплопроводности стен, выражается законом Фурье:

, (1)

где λ – теплопроводность материала стены; ∆ T/∆ x – градиент температуры, т.е. изменение температуры, приходящееся на 1 м толщины стены; S – площадь поверхности стены; t – время процесса.

Подставим числовые значения величин в формулу (1) и вычислим теряемое количество теплоты

.

Ответ: Q = 245 кДж.

Пример 9. Найти молярную массу М газа, если при изобарном нагревании m = 0, 5 кг этого газа на ∆ Т = 10 К требуется на ∆ Q = 1, 48 кДж тепла больше, чем при изохорном нагревании. Какой это газ? Найти для этого газа удельные теплоёмкости при постоянном давлении и при постоянном объёме .

Дано: m = 0, 5 кг; ∆ Т = 10 К; ∆ Q = 1, 48 кДж. Найти: М; ; .

Решение: В соответствии с первым началом термодинамики при изобарном нагревании газ получает количество теплоты QР

QР =U + A, (1)

где ∆ U – изменение внутренней энергии газа, А – работа, совершённая газом.

При изобарном расширении

А = рV, (2)

где р – давление газа, ∆ V – изменение объёма газа.

Используя уравнение Клапейрона–Менделеева , записываем

, (3)

где R – молярная газовая постоянная.

При изохорном нагревании газ работу не совершает и полученное им количество теплоты QV расходуется только на увеличение внутренней энергии газа ∆ U.

QV =U. (4)

С учётом выражений (3) и (4) уравнение (1) примет вид

. (5)

По условию задачи ∆ Q = QР – QV, следовательно

. (6)

Выразим молярную массу газа М

. (7)

Рассчитываем .

Данную молекулярную массу имеет молекулярный азот – N2 (двухатомный газ, у которого число степеней свободы i = 5).

По определению , .

Рассчитываем ,

.

Ответ: М = 28∙ 10–3 кг/моль (азот); ;

Пример 10. Кислород занимает объём V1 = 1 м3 и находится под давлением р1 = 200 кПа. Газ нагрели сначала при постоянном давлении до объема V2 = 3 м3, а затем при постоянном объёме до давления
р2 = 500 кПа. Построить график процесса и найти: совершённую газом работу А; изменение ∆ U внутренней энергии и количество теплоты Q, переданное газу.

Дано: V1 = 1 м3; V2 = 3 м3; р1 = 200 кПа = 2·105 Па; р2 = 500 кПа = 5·105 Па; М = 32·10-3 кг/моль. Найти: A;U; Q. Рис. 2

Решение: На рис. 2 показан график перехода газа из состояния 1 в состояние 3 при изобарном, а затем при изохорном нагревании. На графике точками 1, 2, 3 обозначены состояния газа, характеризуемые параметрами (р1, V1, Т1), (р2, V2, Т2), (р3, V3, Т3).

Изменение внутренней энергии газа при переходе его из состояния 1 в состояние 3 выражается формулой

, (1)

где i – число степеней свободы газа (для кислорода, молекулы которого состоят из двух атомов, i = 5); m – масса газа; М – молярная масса газа;
R – молярная газовая постоянная.

Температуры Т1 и Т3 можно найти из уравнения Клапейрона–Менделеева ()

и . (2)

С учетом этого равенство (1) примет вид:

. (3)

Отсюда .

Полная работа, совершаемая газом равна

А = А12 + А23, (4)

где А12 – работа газа при изобарном нагревании из состояния 1 в состояние 2; А23 – работа газа при изохорном переходе газа из состояния 2 в состояние 3.

При любом процесс работа может быть найдена графически, как площадь под кривой в координатах Р, V конкретного процесса. При переходе 1-2 работа А12 равна площади прямоугольника (заштрихованная часть графика на рис. 2):

А = р1∆ V = p1 (V2– V1). (5)

В изохорном процессе объем газа не изменяется, поэтому работа
А23 = 0. Таким образом,

А = А12= p1 (V2 – V1). (6)

Произведём вычисления А = 2∙ 105∙ (3–1)= 4∙ 105 Дж = 0, 4 МДж.

Согласно первому началу термодинамики количество теплоты Q, переданное газу, расходуется на изменениевнутренней энергии ∆ U и на совершение газом работы А:

Q = ∆ U + А. (7)

Подставляя в (7) значения величин, получим Q = 3, 25+0, 4 = 3, 65 МДж.

Ответ: А = 0, 4 МДж; ∆ U = 3, 25 МДж; Q = 3, 65 МДж.

 

Пример 11. Воздух, взятый при температуре t1 = 0 °C, был адиабатно сжат так, что его объём уменьшился в три раза. Определить температуру воздуха после сжатия.

Дано: t1 = 0 °C; Т = 273 К; . Найти: t2.

Решение: Зависимость между температурой и объёмом при адиабатном сжатии выражается уравнением Пуассона:

, (1)

где T1, V1 – соответственно термодинамическая температура и объём до сжатия воздуха; T2, V2 – те же величины после сжатия воздуха; g – коэффициент Пуассона, равный g = сP / сV,

сP и сV – удельные теплоёмкости газа при постоянном давлении и объёме соответственно

Из теории теплоёмкостей газов известно, что

и ,

поэтому g = (i + 2)/i, где i – число степеней свободы молекулы газа.

Сухой воздух состоит в основном из молекулярных кислорода (О2) и азота (N2), для которых i = 5. Следовательно, g = (5 + 2)/5 = l, 4.

Из формулы (1) получим

. (2)

Подставим числовые значения в (2) Т2 = 273 ∙ 31, 4–1 = 273 ∙ 30, 4 К.

Прологарифмируем обе части полученного равенства:

lnT2 = ln 273 + 0, 4∙ ln 3 = 5, 61 + 0, 4∙ 1, 1 = 10, 01.

Отсюда T2 = 424 К или t2 = (Т2 – 273) = (424 – 273) = 151 оС.

Ответ: t2 = 151 оС.

 

Пример 12. Кислород массой m = 0, 45 г имеет в начальном состоянии объём V1 = 2 л и температуру t1 = 10 оC, а в конечном – объём
V2 = 10 л и температуру t2 = 50 оC. Найти изменение энтропии ∆ S кислорода при переходе из первого состояния во второе.

Дано: m = 0, 45 г = 0, 45∙ 10-3 кг; = 32∙ 10-3 кг/моль; t1 = 10 °C; Т1 = 283 К; t2 = 50 оC; Т2 = 323 К; V1 = 2 л = 2∙ 10-3 м3; V2 = 10 л = 10∙ 10-3 м3. Найти: ∆ S.

Решение: Изменение энтропии (приведённое количество теплоты) определяется формулой

, (1)

где δ Q – элементарное количество теплоты, сообщённое газу при данной температуре; Т – термодинамическая температура.

Из первого начала термодинамики для идеального газа элементарное количество теплоты определяется

δ Q = d U + δ A, (2)

где d U – изменение внутренней энергии газа; δ A – элементарная работа газа.

Для идеального газа

, (3)

где m – масса газа; М – молярная масса газа; R – молярная газовая постоянная; i – число степеней свободы (кислород – двухатомный газ,
i = 5).

Элементарная работа расширения газа рассчитывается по формуле:

δ A = p d V, (4)

где p – давление газа; d V – элементарное изменение объёма газа.

Величину p можно найти из уравнения Клапейрона–Менделеева:

. (5)

Отсюда

. (6)

Подставив (3), (4), (6) в (2) определяем δ Q, полученное газом при переходе из состояния 1 в состояние 2:

. (7)

В результате интегрирования, получим изменение энтропии

. (8)

Произведём вычисление

.

Ответ: ∆ S = 0, 19 кДж/К.

 

Пример 13. Идеальный двухатомный газ, содержащий 1 кмоль количества вещества, совершает замкнутый цикл, график которого приведен на рис. 3. Определить работу А, совершаемую газом за цикл; термический кпдцикла η; количество теплоты Q2, переданное холодильнику, если в процессах 1-2 и 2-3 газ получает Q1 = 7, 6 кДж теплоты.

Дано: n = 1 кмоль = 103 моль; Q1 = 7, 6 кДж = 7, 6∙ 103 Дж. Найти: A; η; Q2. Рис. 3

Решение: Цикл состоит из двух изохор (процессы 1-2, 3-4) и двух изобар (процессы 2-3, 4-1). При изохорных процессах изменение объёма газа ∆ V = 0, следовательно, работы

А12 = А34 = 0. (1)

При изобарных процессах 2-3, 4-1 А23 и А41 можно найти аналитически по формуле

A = p ∆ V, (2)

или графически, по площади прямоугольников

A23 = p2 ∆ V12 = p2 (V3 – V2), (3)

A41 = p1 ∆ V41 = p1 (V1 – V4). (4)

Числовые значения давлений и объёмов определяем из графика:
p1 = 12 кПа; p2 = 16 кПа; V1 = V2 = 2 м3; V3 = V4 = 3 м3.

Рассчитаем работы A23 и A41:

A23 = 16∙ 103 (3 – 2) = 16 кДж, A41 = 12∙ 103 (2 – 3) = –12 кДж.

Общая работа за цикл равна сумме работ, совершаемых в каждом процессе цикла:

А = А12 + A23 + А34 + А41. (5)

Таким образом, А = 16 – 12 = 4 кДж.

Эта работа изображена заштрихованной площадью цикла.

По определению термический коэффициент полезного действия η равен

, (6)

где Q1 – количество теплоты, переданное нагревателю, Q2 – количество теплоты, переданное холодильнику.

Подставляя числовые значения, получим: .

Количество теплоты Q2, переданное холодильнику, найдем из уравнения (6):

Q2 = (1- η)∙ Q1, (7)

отсюда Q2 = (1- 0, 53)∙ 7, 6∙ 103 = 3, 6∙ 103 Дж = 3, 6 кДж.

Ответ: А = 4 кДж; η = 53%; Q2 = 3, 6 кДж.

 

Пример 14. На какую высоту может подняться вода в капиллярном канале диаметром d = 0, 08 мм в стебле ржи? Смачивание считать полным.

Дано: d = 0, 08 мм = 8∙ 10-5 м; sН2О = 73 мН/м = 73∙ 10-3 Н/м; r = 100кг/ м3. Найти: h.     Рис. 4

Решение: По условию задачи жидкость полностью смачивает стебель. Со стороны стебля на каждый бесконечно малый элемент длины линии соприкосновения жидкости со стеблем действует сила, направленная вверх (рис.4). Результирующая всех сил, действующих на контур, также направлена вверх и определяется по формуле

F = 2π sr, (1)

где r – радиус капилляра, s – коэффициент поверхностного натяжения жидкости.

Сила F вызывает подъём жидкости в капилляре до тех пор, пока не будет уравновешена силой тяжести, действующей на весь поднятый столб жидкости. Условием равновесия является равенство

F = mg. (2)

Масса поднятого столба жидкости

m = Vr = π r2hr, (3)

где r - плотность жидкости, V – объём поднятого слоя.

С учётом (1) и (3) формула (2) примет вид

2π sr = π r2hgr. (4)

Отсюда

. (5)

Рассчитываем высоту поднятия воды в стебле ржи:

.

Ответ: h = 36, 5 см.

Электромагнитные явления (электростатика, постоянный ток)


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.049 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал