Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Свойства операции транспонирования.






1) . 3) .

2) . 4) .

2. Определители второго, третьего и n ‑ го порядков (определе­ния и их свойства). Теорема Лапласа о разложении определителя по элементам строки или столбца.

Определители и их свойства

Понятие определителя - число, характеризующее квадратную матрицу , необходимо для решения систем линейных алгебраических уравнений.

Определитель матрицы обозначают , , .

1) Определителем матицы 1-го порядка , называется элемент : ;

2) Определителем матрицы 2-го порядка называется число, вычисляемое по формуле:

. Произведения называются членами определителя 2-го порядка.

Пример. Вычислить определитель матрицы . Р е ш е н и е. .

3) Определителем матрицы 3-го порядка называется число, вычисляемое по формуле:

.

Данная формула получила название правила треугольников или правило Сарруса.

При вычислении определителя 3-го порядка удобно пользоваться следующей схемой, показывающей произведения каких элементов берутся со знаком “+”, а каких со знаком “-“:

 
 


Пример. Вычислить определитель . Р е ш е н и е. .

4) Определитель квадратной матрицы -го порядка (определитель -го порядка).

Рассмотрим квадратную матрицу n -го порядка. Зачеркнем элемент матрицы, стоящий на пересечении -й строки и -го столбца. В результате получается матрица порядка . Пусть дана матрица n -го порядка:

.

Минором элемента матрицы n -го порядка называется определитель матрицы -го порядка, полученной из матрицы вычеркиванием -й строки и -го столбца.

Например минором матрицы 3-го порядка будет:

Определение. Алгебраическим дополнением элемента матрицы -го порядка называется минор, взятый со знаком :

.

Пример. Найти алгебраические дополнения всех элементов матрицы

.

Р е ш е н и е:

, , ,
, , ,      

Теорема Лапласа. Определитель квадратной матрицы равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения:

(разложение по элементам -й строки; ).

(разложение по элементам -го столбца; ).

Пример. Вычислить определитель разложением по элементам

а) 1-й строки; б) 1-го столбца.

Р е ш е н и е. а) , б) .

Свойства определителей

1. Если какая-либо строка (столбца) матрицы состоит из одних нулей, то ее определитель равен 0.

2. Если все элементы какой-либо строки (столбца) матрицы умножить на число , то ее определитель умножится на это число .

Замечание. За знак определителя можно выносить общий множитель любой строки (столбца) в отличие от матрицы, за знак которой можно выносить общий множитель всех элементов.

3. При транспонировании матрицы ее определитель не изменяется: .

4. При перестановки двух строк (столбцов) матрицы ее определитель меняет знак на противоположный.

5. Если квадратная матрица содержит две одинаковые строки (столбца), то ее определитель равен 0.

6. Если элементы двух строк (столбцов) матрицы пропорциональны, то ее определитель равен 0.

7. Сумма произведений элементов какой-либо строки (столбца) матрицы на алгебраические дополнения элементов другой строки (столбца) этой матрицы равна 0.

8. Определитель матрицы не изменится, если к элементам какой-либо строки (столбца) матрицы прибавить элементы другой строки (столбца), предварительно умноженные на одно и то же число.

9. Сумма произведений произвольных чисел на алгебраические дополнения любой строки (столбца) равна определителю матрицы, полученной из данной заменой элементов этой строки (столбца) на числа .

10. Определитель произведения двух квадратных матриц равен произведению их определителей: , где , а и - матрицы -го порядка.

Перечисленные свойства определителей позволяют существенно упростить их вычисления для определителей высоких порядков. При этом с помощью свойств 1-9 желательно преобразовать исходную матрицу таким образом, чтобы она имела строку (столбец), содержащую как можно больше нулей, а потом вычислить определитель, разложенный по этой строке (столбцу).

3. Квадратная матрица и ее определитель. Особенная и неосо­бенная квадратные матрицы. Присоединенная матрица. Матрица, обратная данной, и алгоритм ее вычисления.

Обратная матрица

Для каждого числа существует обратное число такое, что произведение . Для квадратных матриц тоже вводится аналогичное понятие.

Определение. Матрица называется обратной по отношению к квадратной матрице , если при умножении этой матрицы на данную как справа, так и слева получается единичная матрица:

.

Только квадратная матрица может иметь обратную, однако не каждая квадратная матрица имеет обратную.

Определение. Матрица является невырожденной (неособенной), если , в противном случае при матрица называется вырожденной (особенной).

Теорема (необходимое и достаточное условие существования обратной матрицы). Обратная матрица существует (и единственна) тогда и только тогда, когда исходная матрица является невырожденной (неособенной) и вычисляется по формуле

,

где - присоединенная матрица, состоящая из алгебраических дополнений элементов транспонированной матрицы, т.е. .

Необходимость. Пусть матрица имеет обратную , т.е. . По свойству 10 определителей имеем: , т.е. и .

Достаточность. Пусть . Рассмотрим квадратную матрицу n-го порядка , называемую присоединенной, элементы которой являются алгебраическими дополнениями элементов матрицы , транспонированной к . Тогда элементы произведения матриц определяются по правилу умножения матриц. Поэтому матрица В является диагональной, элементы ее главной диагонали равны определителю исходной матрицы. А произведение на равно той же матрице В: .

Единственность обратной матрицы. Предположим, что существуют еще матрицы и такие, что и , где матрица получена по формуле и выполняются равенства и . Тогда, умножая на слева первое из них, получаем: , откуда , т.е. . Аналогично, умножая второе равенство на справа, получаем . Единственность доказана.

Алгоритм вычисления обратной матрицы.

1. Находим определитель исходной матрицы. Если , то матрица - вырожденная и обратной матрицы не существует. Если , то матрица невырожденная и обратная матрица существует.

2. Находим матрицу , транспонированную к .

3. Находим алгебраические дополнения элементов и составляем из них присоединенную матрицу .

4. Составляем обратную матрицу по формуле .

5. Проверяем правильность вычисления обратной матрицы , исходя из ее определения: .

Пример. Найти матрицу, обратную данной: .

Р е ш е н и е.

1) Определитель матрицы

.

2) Находим алгебраические дополнения элементов матрицы и составляем из них присоединенную матрицу :

 

.

3) Вычисляем обратную матрицу:

,

4) Проверяем:

.

4. Понятие минора k ‑ го порядка. Ранг матрицы (определение). Вычисление ранга матрицы с помощью элементарных преобразо­ваний. Пример.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.018 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал