Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Ранг матрицы. Линейная независимость строк матрицы
Для решения и исследования ряда математических и прикладных задач важное значение имеет понятие ранга матрицы. В матрице Например, из матриц Определение. Рангом матрицы Из определения следует: 1) Ранг матрицы 2) 3) Для квадратной матрицы n-го порядка Поскольку непосредственный перебор всех возможных миноров матрицы Элементарные преобразования матрицы: 1) Отбрасывание нулевой строки (столбца). 2) Умножение всех элементов строки (столбца) на число 3) Изменение порядка строк (столбцов) матрицы. 4) Прибавление к каждому элементу одной строки (столбца) соответствующих элементов другой строки (столбца), умноженных на любое число. 5) Транспонирование матрицы. Определение. Матрица Теорема. Ранг матрицы не изменяется при элементарных преобразованиях матрицы. С помощью элементарных преобразований можно привести матрицу к так называемому ступенчатому виду, когда вычисление ее ранга не представляет труда. Матрица
Очевидно, что ранг ступенчатой матрицы равен числу ненулевых строк
Пример. Определить ранг матрицы с помощью элементарных преобразований.
Ранг матрицы равен количеству ненулевых строк, т.е. 5. Линейная независимость столбцов (строк) матрицы. Теорема о ранге матрицы.
|