Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Контроль развития на уровне процессинга яРНК






Из предыдущего раздела мы узнали, что в геноме транскрибируется намного больше последовательностей по сравнению с теми, которые становятся мРНК. Этот вывод предполагает, что контроль дифференцировки может эффективно осуществляться после транскрипции путем дифференциального процессинга предшественников специфических мРНК. Недавние исследования на морском еже и крысе подтвердили это.

Из клеток бластулы морского ежа была получена уникальная ДНК с помощью денатурации ДНК и выделения фракции, которая не реассоциировала при значении С 0 t, равном 200 (Kleene, Humphreys, 1977). Ядерная РНК из клеток бластулы связывала 15% этой ДНК. Сходным образом яРНК со стадии плутеуса также связывала только 15% этой ДНК, даже если ее добавляли в большом избытке. Поскольку только одна цепь ДНК комплементарна РНК, 15% гибридизованной ДНК соответствуют 30% генома. Следовательно, около 30% генома активно транскрибируют яРНК на стадии бластулы и около 30% генома активно транскрибируют яРНК на стадии плутеуса. Одинаковы ли эти два набора последовательностей ДНК? Ответ на этот вопрос был получен в опытах, в которых ядерные РНК со стадий бластулы и плутеуса смешивали и затем добавляли их смесь к денатурированной уникальной ДНК. Если эти последовательности отличаются полностью, то следует ожидать, что свяжется 30% ДНК (т.е. 60% генома будут кодировать совместный набор мРНК для бластулы и плутеуса). Если они идентичны, то следует ожидать, что свяжется 15% ДНК. Полученные результаты представлены на рис. 13.4. Смесь связывала только 15% ДНК. Последовательности яРНК бластулы и плутеуса присоединялись к одной и той же ДНК. В пределах ошибки эксперимента можно считать, что популяции яРНК в клетках бластулы и плутеуса идентичны.


 

Гилберт С. Биология развития: В 3-х т. Т. 2: Пер. с англ. – М.: Мир, 1994. – 235 с.

___________ КОНТРОЛЬ РАЗВИТИЯ НА УРОВНЕ ПРОЦЕССИНГА РНК _______________________________ 181

Рис. 13.4.Гибридизация ядерной РНК с уникальной [3Н]-ДНК. Радиоактивную уникальную ДНК смешивали с РНК бластулы. РНК плутеуса или со смесью РНК бластулы и плутеуса. Смеси инкубировали в условиях, обеспечивающих гибридизацию всех комплементарных последовательностей. Во всех трех случаях с РНК гибридизовалось около 15% ДНК. (По Kleene, Humphreys, 1977.) Рис. 13.5. Гибридизация «плутеус-плюс» ДНК и «плутеус-нуль» ДНК с РНК плутеуса и бластулы. А. РНК плутеуса и РНК бластулы связывают одинаковые количества «плутеус-плюс» ДНК. Б. Ни одна из этих РНК не связывает существенного количества «плутеус-нуль» ДНК. (По Kleene, Humphreys, 1977.)

 

Чтобы проверить это неожиданное наблюдение, те же исследователи (Kleene, Humphreys, 1977, 1985) выделили радиоактивную уникальную ДНК и смешали ее с РНК бластулы или плутеуса при высоком значении С 0 t (чтобы все последовательности ДНК могли присоединить РНК в случае, если комплементарные к ним последовательности РНК имелись в реакции). Затем они выделили те фрагменты ДНК, которые не связались с яРНК бластулы (бластула-нуль-ДНК), и те фрагменты ДНК, которые не связались с яРНК плутеуса (плутеус-нуль-ДНК). Когда бластула-нуль-ДНК денатурировали и смешали с новыми порциями яРНК плутеуса и когда плутеус-нуль-ДНК смешали с яРНК бластулы, гибридизации выше фоновых значений не наблюдалось (рис. 13.5). Таким образом, последовательности ДНК, транскрибируемые на стадии бластулы, действительно идентичны последовательностям ДНК, транскрибируемым на стадии плутеуса.

Некоторые наиболее убедительные данные, свидетельствующие о контроле за развитием на уровне процессинга, были получены в лаборатории Э. Дэвидсона и Р. Бриттена. Эти авторы впервые обнаружили, что у морского ежа Strongylocentrotus purpuratus в ходе развития сложность мРНК прогрессивно уменьшается (Galau et al., 1976), мРНК ооцита связывает приблизительно 4, 5% генома и имеет сложность (измеренную по С 0 t) около 37 000 000 оснований. При средней длине мРНК в 2000 оснований это соответствует приблизительно 18 500 различным видам информационных РНК. мРНК бластулы связывает только 3, 1% генома и представляет около 13 000 видов мРНК, а мРНК гаструлы связывает всего лишь 2, 0% ДНК и имеет 8000 видов мРНК. После завершения дифференцировки тканей каждая из них содержит около 6000 видов мРНК, которые гибридизуются только с 0, 75% генома (рис. 13.6). Таким образом, часть генома, которая экспрессируется в цитоплазматическую мРНК, постепенно уменьшается.

Следующий вопрос, которым задались исследователи: не вызвано ли такое уменьшение изменениями в транскрипции генома? Другими словами, не уменьшается ли сходным образом разнообразие яРНК? Для ответа на этот вопрос была выделена мРНК бластулы, которую гибридизовали с денатурированной радиоактивной ДНК (Wold et al., 1978).


 

Гилберт С. Биология развития: В 3-х т. Т. 2: Пер. с англ. – М.: Мир, 1994. – 235 с.

182 _______________ ГЛАВА 13 _____________________________________________________________________________

Рис. 13.6. Наборы структурных генов, представленные своими мРНК, в различных тканях морского ежа. Закрашенная часть каждого столбца соответствует фракции мPHK данной ткани, которая идентична мРНК гаструлы. Незакрашенная часть столбца соответствует фракции мРНК, которая отличается от мРНК гаструлы. Сложность указана на оси ординат тремя различными способами: горизонтальная черта соответствует 100% сложности мРНК гаструлы. (По Galau et al., 1976.) Рис. 13.7. Специфичность мДНК бластулы ν морского ежа. Гибридизация мДНК (кДНК для мРНК бластулы) с мРНК бластулы и цитоплазматической РНК кишечника. (По Wold et al., 1978.)

 

Рис. 13.8. Идентичность (в пределах точности экспериментов) ядерной РНК из дифференцированных тканей морского ежа. А. Гибридизация мДНК бластулы с ядерной РНК кишечника, целомоцитов и гаструлы. Смеси для гибридизации инкубировали при значениях С 0 t достаточно высоких, чтобы обеспечить спаривание всех комплементарных последовательностей. Все последовательности бластулы были обнаружены в каждой популяции ядерных РНК, но не среди цитоплазматических РНК (рис. 13.7). Б. Схематическое изображение модели, основанной на дифференциальном процессинге РНК. В клетках обоих типов транскрибируются одинаковые наборы РНК (a, b, с, d, е), но процессинг в цитоплазму в клетках одного типа проходят последовательности c, d и e, а в клетках другого типа последовательности a, b и c. (А – из Wold et al., 1978.)

 

Гилберт С. Биология развития: В 3-х т. Т. 2: Пер. с англ. – М.: Мир, 1994. – 235 с.

__________________ КОНТРОЛЬ РАЗВИТИЯ НА УРОВНЕ ПРОЦЕССИНГА РНК ____________________________ 183

 

Таблица 13.2. Сравнение тканей по последовательностям структурных генов, представленным в мРНК и яРНК
Источник кДНК-зонда Нормированная реакция с гомологичной мРНК Нормированная реакция с гетерологичной мРНК Нормированная реакция с яРНК
 
  мРНК % мРНК % яРНК %
Морской еж            
мРНК бластулы            
(уникальная ДНК) Бластула   Кишечник   Кишечник  
      Целомоциты   Целомоциты  
Мышь            
мРНК мозга            
(общая кДНК) Мозг   Почки   Почки  
мРНК мозга            
(кДНК. представ-            
ляющая редкие            
мРНК) Мозг   Почки S6 Почки  
Источник: Davidson, Britten, 1979.

Полученные гибриды элюировали, денатурировали и отделили ДНК от связавшейся с ней РНК. Таким способом был получен ДНК-зонд, который узнает последовательности мРНК бластулы. Эта ДНК обладала высокой специфичностью в отношении последовательностей мРНК бластулы (рис. 13.7): около 78% такой «ДНК бластулы» могли связаться с мРНК бластулы, тогда как с мРНК кишечника взрослой особи могли связаться менее 10% этой ДНК.

Затем эту «мДНК бластулы» использовали для идентификации последовательностей мРНК бластулы в препаратах РНК из различных дифференцированных тканей. Полученные результаты представлены на рис. 13.8 и в табл. 13.2. Последовательности мРНК бластулы были обнаружены в РНК из всех трех использованных в эксперименте тканей взрослых особей. Около 80% мДНК бластулы гибридизовались с яРНК гаструлы, кишечника и целомоцитов. Таким образом, только 10% зонда, узнающего мРНК бластулы, будут взаимодействовать с мРНК кишечника, но около 80% этого зонда будут взаимодействовать с ядерной РНК кишечника. Поскольку контрольный опыт (гибридизация мДНК бластулы с мРНК бластулы) также дает величину 75–80%, выясняется, что все последовательности мРНК бластулы присутствуют среди транскриптов яРНК во всех ядрах клеток кишечника, целомоцитов и клеток гаструлы. несмотря на отсутствие этих мРНК в цитоплазме. Ядро транскрибирует специфические для бластулы последовательности даже в дифференцированных целомоцитах и клетках кишечника. Итак, представляется вероятным, что контроль экспрессии генов у морского ежа осуществляется преимущественно на уровне процессинга РНК. Помимо этого аналогичные эксперименты на крысах и мышах свидетельствуют о практически полной идентичности ядерных РНК из мозга, печени и почки (Chikaraishi et al., 1978).

Дополнительные сведения и гипотезы: Механизмы специфического процессинга ядерных РНК

В 1979 г. Дэвидсон и Бриттен предложили модель дифференцировки, основанную на специфическом процессинге ядерных предшественников мРНК. Это довольно гипотетичная модель, и она продолжает оставаться объектом горячих споров. Хотя в этой модели сохранены элементы транскрипционной регуляции, она прямо декларирует независимость биологии развития от моделей «по образцу клеток coli», где экспрессия генов контролируется почти исключительно на уровне дифференциальной транскрипции. Согласно этой модели, молекулы мРНК делятся на три класса в зависимости от их сложности:

1. Класс сложных (уникальных) мРНК. 1-15 копий на клетку. Различных видов мРНК этого класса достаточно для кодирования более 104 разных белков.

2. Умеренно повторяющиеся мРНК. 15-300 копий на клетку. Различных видов мРНК этого класса достаточно для кодирования 500–1000 различных белков.

3. Избыточные (высокоповторяющиеся) мРНК.


 

Гилберт С. Биология развития: В 3-х т. Т. 2: Пер. с англ. – М.: Мир, 1994. – 235 с.

184 _______________ ГЛАВА 13 ______________________________________________________________________________

Этот вид мРНК обнаруживается в дифференцированных клетках, синтезирующих белки какой-либо одной группы. В одной клетке может содержаться от 104 до 105 копий. Например, клетки яйцевода кур-несушек содержат 1, 0–1, 5·105 молекул овальбуминовой мРНК. Ретикулоциты мыши и курицы содержат соответственно 4·104и 1, 5·105 молекул глобиновых мРНК на клетку. мРНК кольца Бальбиани 2 из клеток слюнных желез Chironomus tentans является еще одним представителем этого класса избыточных мРНК.

Большая часть данных, свидетельствующих о регуляции на уровне транскрипции, получена для класса избыточных мРНК (так как их проще всего очистить и изучить). Однако они могут представлять собой исключение. Обычно эти мРНК кодируют белки, характеризующие определенную клетку, и поэтому представляют конечную стадию дифференцировки, а не ее первопричину. Например, эритроцит проходит долгий путь дифференцировки, прежде чем достигнет стадии, когда начинает синтезироваться глобин. Из предыдущего раздела мы узнали, что последовательности мРНК, специфические для конкретной клетки, можно обнаружить в яРНК клеток всех типов. В табл. 13.2 суммированы некоторые из этих данных. Для уникальных последовательностей РНК, кодирующих белки, характерна цитоплазматическая, а не ядерная специфичность. Противоположная ситуация наблюдается для повторяющихся последовательностей РНК. Транскрипты с умеренно повторяющихся генов не обнаруживаются в мРНК морского ежа, тем не менее внутри ядра проявляется клеточная специфичность в отношении этих последовательностей! В ядерных РНК морского ежа, культивируемых клеток человека и клеток асцитной опухоли крысы повторяющиеся последовательности перемешаны с уникальными (напоминая этим последовательности ДНК). Было обнаружено, что в яРНК зародышей морского ежа имеются специфические РНК-повторы, представленные на различных стадиях развития. Более того, эти повторы в яРНК были представлены обеими комплементарными цепями.

Дэвидсон и Бриттен использовали эти данные для построения своей модели экспрессии генов. Во-первых, они предположили, что уникальные гены, которые образуют классы сложных и умеренно повторяющихся мРНК, транскрибируются постоянно с одной и той же скоростью в клетках всех типов. Во-вторых, экспрессия генов регулируется путем определения количества каждого предшественника мРНК, который подвергается процессингу и поступает в цитоплазму. В-третьих, внутриядерные дуплексы РНК–РНК, образуемые комплементарными повторяющимися транскриптами, определяют, какой предшественник мРНК претерпит процессинг. Образование дуплексов в клетках данного типа зависит от внутриядерной концентрации специфических повторов яРНК.

Модель регуляции Дэвидсона и Бриттена представлена на рис. 13.9. «Конститутивная единица транскрипции» (КЕТ) транскрибируется постоянно в клетках всех типов. В результате синтезируется конститутивный транскрипт (КТ), состоящий из кодирующей белок РНК (включая интроны и фланкирующие последовательности) и последовательностей с промежуточной повторяющейся ДНК. В другой области генома находятся «интегрирующие регуляторные единицы транскрипции» (ИРЕТ), которые не содержат структурных генов и транскрибируются специфическим для клеток образом1. Эти гены содержат последовательность ДНК (сенсор), которая может включить ИРЕТ в ответ на какой-то конкретный сигнал. ИРЕТ содержит специфические ДНК-повторы и транскрибируется, обеспечивая клетку специфическими интегрирующими регуляторными транскриптами (ИРТ). Между повторами из КТ и комплементарными повторами из ИРТ образуются дуплексы РНК–РНК. Эти дуплексы требуются для сохранения и процессинга яРНК. Если двухцепочечные участки не образуются, то яРНК подвергается гидролизу нуклеазами. Если дуплексы формируются, то яРНК сохраняется, чтобы пройти процессинг и стать мРНК.

Существует множество вариаций на эту тему. Одна из интересных гипотез заключается в том, что активация ИРЕТ может быть эквивалентом того, что принято называть детерминацией. Чтобы ген экспрессировался, требуется активировать как специфический ген (КЕТ), так и ИРЕТ. Если ген не экспрессируется постоянно, необходим двухступенчатый процесс: активация транскрипции структурного гена и активация транскрипции ИРЕТ. Первая активация может представлять детерминацию, тогда как вторая активация будет вызывать экспрессию гена и дифференцировку. В этом случае детерминация клетки может повлечь за собой дифференцировку ядра.

1 Мы вновь видим специфическую для клеток дифференциальную транскрипцию, хотя в этой модели постулируется дифференциальная транскрипция специфических для ядер повторяющихся последовательностей, а не генов, кодирующих белки. Вся дифференцировка возвращается в конце концов к активации специфических генов компонентами цитоплазмы ооцитов или внешними факторами (что, возможно, справедливо для плода млекопитающих).


 

Гилберт С. Биология развития: В 3-х т. Т. 2: Пер. с англ. – М.: Мир, 1994. – 235 с.

____________ КОНТРОЛЬ РАЗВИТИЯ НА УРОВНЕ ПРОЦЕССИНГА РНК __________________________________ 185

 

Рис. 13.9. Возможный механизм регуляции экспрессии генов на уровне процессинга. Показанные на рисунке последовательности а и b могут представлять собой повторы, обнаруженные в областях интронов. (По Davidson, Britten, 1979.)

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.01 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал