Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Систем линейных алгебраических уравнений
Рассмотрим систему m линейных алгебраических уравнений с n неизвестными x 1, x 2, …, xn: Составим две матрицы: и , где А − основная матрица системы, В − расширенная матрица системы. Условие совместности любой линейной алгебраической системы определяется теоремой Кронекера-Капелли: для того, чтобы линейная алгебраическая система уравнений была совместна необходимо и достаточно, чтобы ранг основной матрицы системы равнялся рангу расширенной матрицы системы, т. е. . При этом возможны два случая: а) , тогда система имеет единственное решение; б) , тогда система имеет бесконечное множество решений (при этом r неизвестных являются основными, остальные n - r неизвестных – свободными, им можно придавать произвольные значения, в зависимости от которых принимают значения основные переменные).
|