Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
А) Метод Крамера.
1а) Вычисляем определитель системы и проверяем, что он отличен от нуля: . 2а) Так как , то система имеет единственное решение, определяемое формулами Крамера: 3а) Вычисляем определители : , , . 4а) Находим решение: . 5а) Выполняем проверку: . Ответ: . Б) Метод Гаусса. 1б) Записываем расширенную матрицу системы: . 2б) Выполняем прямой ход метода Гаусса. В результате прямого хода матрица системы должна быть преобразована с помощью элементарных преобразований строк к матрице треугольного или трапециевидного вида с элементами . Система уравнений, матрица которой является треугольной с элементами , имеет единственное решение, а система уравнений, матрица которой является трапециевидной с элементами , имеет бесконечно много решений. . В результате элементарных преобразований матрица системы преобразована к специальному виду . Система уравнений, матрица которой , является треугольной с ненулевыми диагональными элементами , имеет всегда единственное решение, которое находим, выполняя обратный ход. Если при выполнение преобразования расширенной матрицы в преобразованной матрице появляется строка , где , то это говорит о несовместности исходной системы уравнений. 3б) Выполняем обратный ход метода Гаусса. Записываем систему уравнений, соответствующую последней расширенной матрице прямого хода: и последовательно из уравнений системы, начиная с последнего, находим значения всех неизвестных: . 4б) Выполняем проверку: . Ответ: .
21 – 30. Даны векторы : , , . Требуется: а) найти векторы и ; б) вычислить скалярное произведение ; в) найти проекцию вектора на направление вектора ; г) найти векторное произведение и его модуль .
|