Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Проекция силы на ось






 

Проекция силы на ось – это алгебраическая величина, равная произведению модуля силы на косинус угла между положительным направлением оси и вектором силы (т.е. это отрезок, откладываемый силой на соответствующие оси. Рисунок 1.13):

 

Fx= Fcosα;

Px= Pcosβ = P⋅ cos90o=0;

Rx=Rcosγ = -R⋅ cos(180o-γ).

 

Рисунок 1.13

 

Проекция силы на ось может быть положительной, рис. 1.13а (0 ≤ α < π /2), равной нулю, рис. 1.13б (β = π /2) и отрицательной, рис. 1.13в (π /2 < γ ≤ π).

 

Иногда для нахождения проекции силы на ось сначала нужно найти ее проекцию на плоскость, а потом проекцию на ось (рисунок 1.14):

 

Pz= P sinα;

Px= (P cosα)cosβ;

Py= (P cosα)cosγ = P cosα ⋅ cos(90o-β).

 

 

Рисунок 1.14

 

 

4. Сосре­доточенными считаются силы, приложенные к малой поверхности, размеры которой малы по сравнению с размерами тела. Однако при расчете напряжений вблизи зоны приложения силы нагрузку следует считать распределенной. К сосредоточенным нагрузкам относят не только сосредоточенные силы, но и пары сил, примером которых можно счи­тать нагрузку, создаваемую гаечным ключом при закручивании гайки. Сосредоточенные усилия измеряются в кН.

Распределенные нагрузки бывают распределенными по длине и по площади. К распределенным нагрузкам относят давление жидкости, газа или другого тела. Распределенные силы измеряются, как правило, в кН/м (распределенные по длине) и кН/м2 (распределенные по площади).

ИНТЕНСИВНОСТЬ НАГРУЗКИ нагрузка, приходящаяся на единицу нагруженной площади или длины

5.Сложение сходящихся сил. Система сил, линии действия которых пересекаются в одной точке,

называется системой с х о д я щ и х с я с и л.

Сложить две или несколько сил - это значит заменить эти силы одной силой, им эквивалентной, т.е.

найти их равнодействующую.

 

Из ADC: т.к.

 


 

 

Разложить силу — значит найти ее составляющие. Две равные силы, направленные по одной прямой в противоположные стороны, взаимно уравновешиваются, тело при действии этих сил находится в равновесии, т. е. в состоянии покоя.

6. Момент силы относительно центра (или точки).

Опыт показывает, что под действием силы твердое тело может наряду с поступательным перемещением совершать вращение вокруг того или иного центра. Вращательный эффект силы характеризуется ее момен­том

Рассмотрим силу , приложенную в точке А твердого тела (рис. 20). Допустим, что сила стремится повернуть тело вокруг центра О. Перпендикуляр h, опущенный из центра O на линию действия силы , на­зывается плечом силы от­носительно центра О. Так как точку приложения силы можно произвольно переме­щать вдоль линии действия, то, очевидно, вращательный эффект силы будет зависеть: 1) от модуля силы F и длины плеча h; 2) от поло­жения плоскости поворота ОАВ, проходящей через центр О и силу F; 3) от направления поворота к этой плоскости.

Рис.20

 

Ограничимся пока рассмотрением систем сил, лежащих в одной плоскости. В этом случае плоскость поворота для всех сил является общей и в дополнительном задании не нуждается.

Тогда для количественного измерения вращательного эффекта можно ввести следующее понятие о моменте силы: моментом силы относительно центра О называется величина, равная взятому с соответствующим знаком произведению модуля силы на длину плеча.

Момент силы относительно центра О будем обозначать сим­волом m 0(F). Следовательно,

В дальнейшем условимся считать, что момент имеет знак плюс, если сила стремится повернуть тело вокруг центра О против хода ча­совой стрелки, и знак минус, - если по ходу часовой стрелки. Так, для силы , изображенной на рис.20, а, момент относительно центра О имеет знак плюс, а для силы, показанной на рис.20, б, - знак ми­нус.

Отметим следующие свойства момента силы:

1) Момент силы не изменяется при переносе точки приложения силы вдольее линии действия.

2) Момент силы относительно центра О равен нулю только тогда, когда сила равна нулю или когда линия действия силы проходит через центр О (плечо равно нулю).

3) Момент силы численно выражается удвоенной площадью тре­угольника ОАВ (рис. 20, б)

Этот результат следует из того, что

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.008 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал