![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Тема 5.2. Расчет простых и сложных трубопроводов.
Трубопроводы постоянного и переменного сечения. Сифонный трубопровод. Последовательное и параллельное соединение трубопроводов. Трубопровод с насосной подачей. Расчет судового трубопровода.
Указания к теме 5.1.
Любая система на судне, будьто система энергетической установки /например, топливная, охлаждения двигателя, питательная парового котла/ или общесудовая /например, пожарная, осушения/, состоит из трубопроводов и гидравлических машин. Каждый инженер должен знать и уметь выполнять расчеты трубопроводов, так как впрактической деятельности приходится вносить изменения, реконструкцию той или иной системы. В зависимости от длины и условий работы различают два типа трубопроводов: короткие и длинные. Короткими называют такие трубопроводы, в которых местные потери являются значительными и составляют не менее 5-10 % от потерь напора по длине. Длинными называют трубопроводы, имеющие значительную протяженность, в которых потери напора по длине являются основными. В зависимости от гидравлической схемы работы трубопроводы подразделяются на простые /не имеющие ответвлений/ и сложные. 1. Простым трубопроводом называют трубопровод, по которому жидкость транспортируется от питателя к приемнику без промежуточных ответвлений потока (рис. IX—1). Питателями и приемниками в гидросистемах могут являться различные устройства — насосы и гидродвигателн, аккумуляторы, резервуары и др. Трубопровод может иметь постоянный диаметр по всей длине или же состоять из ряда последовательно соединенных участков различного диаметра. Исходным при расчетах простого трубопровода является уравнение баланса напоров (уравнение Бернулли) для потока от сечения а в питателе перед входом в трубопровод до сечения b в приемнике после выхода жидкости из трубопровода. При установившемся движении жидкости:
где
Для удобства расчетов вводится понятие располагаемого напора трубопровода
который представляет перепад гидростатических напоров в питателе и приемнике и выражается разностью пьезометрических уровней в сечениях а и b. Преобразуя уравнение баланса напоров, получаем общий вид расчетного уравнения простого трубопровода:
Если площади сечений питателя и приемника достаточно велики по сравнению с сечением трубопровода (например, трубопровод, соединяющий два больших резервуара), скоростными напорами жидкости в этих сечениях при составлении баланса напоров можно пренебречь. При этом расчетное уравнение приобретает вид
отвечая процессу, в котором весь располагаемый напор затрачивается на преодоление гидравлических сопротивлений. Уравнение (2) применимо также независимо от размеров питателя и приемника в тех случаях, когда трубопровод имеет достаточно большую длину, при которой скоростные напоры на входе и выходе из трубопровода оказываются пренебрежимо малыми по сравнению с потерями напора на трение по его длине. 1. 2. Применим уравнение (2) к простому трубопроводу, который соединяет два больших резервуара с постоянными уровнями жидкости и состоит из k последовательных участков длиной ll и диаметром dl (рис. IX—2). Заметим, что показанные на схеме уровни жидкости в резервуарах следует рассматривать в более общем смысле как пьезометрические уровни в питателе и приемнике. Выражая потери на трение по длине и местные потери напора общими формулами
получим
где Используя уравнение расхода
получим расчетное уравнение трубопровода в виде
где Fk — площадь выходного сечения трубопровода; Fi — площадь сечения участка диаметром di. Для простого трубопровода длиной l и постоянным диаметром уравнение (4) при турбулентном режиме имеет вид:
где Выражая скорость через расход и определяя числовой множитель при g = 9, 81 м/с2, получим:
где l, d, Н — в м; Q — в м3/с. В ряде задач на определение пропускной способности трубопровода при турбулентном режиме движения целесообразно приводить уравнение (5) к виду
где При этом расход выражается формулой:
где При истечении жидкости из большего резервуара через трубопровод в атмосферу (рис. IX —3) уравнение Бернулли имеет вид:
где H — располагаемый напор трубопровода, определяемый высотой пьезометрического уровня в резервуаре-питателе над центром выходного сечения трубопровода;
Так как потеря напора при выходе потока из трубопровода в данном случае отсутствует, уравнение (8) при подстановке в него выражений потерь переходит в уравнение (4). Следовательно, приведенные выше расчетные зависимости являются общими для трубопровода при истечении, как под уровень, так и в атмосферу. 1. 3. Графики напоров, построение которых дано на рис. IX—2 и IX—3, показывают изменение по длине трубопровода полного напора потока и его составляющих. Линия напора (удельной механической энергии потока) строится путем последовательного вычитания потерь, нарастающих вдоль потока, из начального напора потока (заданного пьезометрическим уровнем в питающем резервуаре). Пьезометрическая линия (дающая изменение гидростатического напора потока) строится путем вычитания скоростного напора в каждом сечении из полного напора потока. Пьезометрический напор 1. 4. Если часть длины трубопровода находится под вакуумом (например, сифонный трубопровод, рис. IX—5), необходимо проверить наибольший вакуум в опасном сечении С:
где h — высота сечения С над начальным пьезометрическим уровнем в баке-питателе; v —скорость в этом сечении;
Для обеспечения нормальной (бескавитационной) работы трубопровода должно выполняться условие:
где 1. 5. При достаточно большой относительной длине l/d трубопровода скоростной напор v2/(2g) пренебрежимо мал по сравнению с общей потерей напора в трубопроводе. Поэтому для длинного трубопровода постоянного диаметра расчетное уравнение (5) или (6) можно заменить приближенным:
При расчете длинных трубопроводов, в которых доминируют потери на трение по длине, целесообразна замена местных сопротивлений эквивалентными длинамипо соотношению
При такой замене расчетное уравнение (10) можно представить в виде, характерном для трубопровода без местных сопротивлений: где— приведенная длина трубопровода. Для трубопровода, состоящего из k последовательных участков различного диаметра, имеем аналогичное соотношение:
График напоров для длинного трубопровода строится упрощенно (рис. IX—6), поскольку относительная малость скоростных напоров позволяет рассматривать линию, напора и пьезометрическую линию как практически совпадающие. 1. 6. Расчет трубопровода на основе приведенных выше соотношений связан с выбором коэффициентов местных сопротивлений а) Ламинарный режим (
б) Турбулентный режим ( Область гидравлически гладких труб. Коэффициент сопротивления трения можно определить по формуле Конакова:
и по формуле Блазиуса
в соответствии, с которой потеря напора на трение (величины — в международной системе единиц)
|