Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Сложение пар






Пусть даны две пары с моментами m 1и m 2, расположенные в пере­секающихся плоскостях (рис.25).

Сделаем у пар плечи одинаковыми, равными а = АВ. Тогда модули сил, образующих первую пару, должны быть равны: , а об­разующих вторую пару: .

Эти пары показаны на рис.25, где , . И расположены они в своих плоскостях так, что плечи пар совпадают с прямой АВ на линии пересе­чения плоскостей.

Рис.25

 

Рис. 4.4.

 

Сложив силы, приложенные к точкам А и В, построением паралле­лограммов, получим их равнодействующие и . Так как , то эти силы и будут образовывать пару, мо­мент которой , где – радиус-вектор точки В, совпадающий с АВ.

Так как , то момент полученной пары

.

Следовательно, в результате сложения пар, расположенных в пере­секающихся плоскостях, получится пара сил. Момент её будет равен векторной сумме моментов слагаемых пар.

При сложении нескольких пар, действующих в произвольных плоско­стях, получим пару с моментом

.

Конечно, эта результирующая пара будет располагаться в плоско­сти перпендикулярной вектору .

Равенство нулю результирующей пары будет означать, что пары, действующие на тело, уравновешиваются. Следовательно, условие рав­новесия пар

.

Если пары расположены в одной плоско­сти, векторы моментов их будут параллельны. И момент результирующей пары можно опре­делить как алгебраическую сумму моментов пар.

Рис.26

 

Например, пары, показанные на рис.26, расположены в одной плоскости и моменты их:

m 1=2 Hсм, m 2=5 Hсм, m 3=3 Hсм. Пары урав­нове­шива­ются, потому что алгебраиче­ская сумма их моментов равна нулю:

.

 

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал