![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Попередній аналіз і згладжування часових рядів економічних показників
Попередній аналіз тимчасових рядів економічних показників полягає в основному у виявленні і усуненні аномальних значень рівнів ряду, а також у визначенні наявності тренду в початковому часовому ряду. Під аномальним рівнем розуміють окреме значення рівня часового ряду, яке не відповідає потенційним можливостям досліджуваної економічної системи і яке, залишаючись в якості рівня ряду, істотно впливає на значення основних характеристик часового ряду, у тому числі на відповідну трендову модель. Причинами аномальних спостережень можуть бути помилки технічного порядку, або помилки першого роду: помилки при агрегації і дезагрегуванні показників, при передачі інформації і ін. технічні причини. Помилки першого роду підлягають виявленню і усуненню. Крім того, аномальні рівні в тимчасових рядах можуть виникати через вплив чинників, що мають об’єктивний характер, але що проявляються епізодично, дуже рідко – помилки другого роду; вони усуненню не підлягають. Для виявлення аномальних рівнів тимчасових рядів використовуються методи, розраховані для статистичних сукупностей. Метод Ірвіна – припускає використання наступної формули:
де
Розрахункові значення
Таблиця 12.4. Критичні значення критерію Ірвіна для рівня значимості
Після виявлення аномальних рівнів ряду визначають причини їх виникнення. Якщо точно встановлено, що вони викликані помилками першого роду, то вони усуваються або заміною аномальних рівнів простою середньою арифметичною двох сусідніх рівнів ряду, або заміною аномальних рівнів відповідними значеннями по кривій, що апроксимує цей часовий ряд. Порядок знаходження такої кривої, тобто трендової моделі, розглядається нижче. Для визначення наявності тренду в початковому часовому ряду застосовується декілька методів. Метод перевірки різниць середніх рівнів. Реалізація цього методу складається з чотирьох етапів. На першому етапі початковий часовий ряд На другому етапі для кожної з цих частин обчислюються середні значення і дисперсії:
Третій етап полягає в перевірці рівності (однорідності) дисперсій обох частин ряду за допомогою
з табличним (критичним) значенням Якщо розрахункове значення На четвертому етапі перевіряється гіпотеза про відсутність тренду з використанням
де
Якщо розрахункове значення Метод Фостера-Стьюарта. Цей метод має більше можливостей і дає надійніші результати в порівнянні з попереднім. Окрім тренду самого ряду (як то кажуть, тренду в середньому), він дозволяє встановити наявність тренду дисперсії часового ряду: якщо тренду дисперсії немає, то розкид рівнів ряду постійний; якщо дисперсія збільшується, то ряд «розгойдується» і т. д. Реалізація методу також містить чотири етапи. На першому етапі порівнюють кожний рівень початкового часового ряду, починаючи з другого рівня, з усіма попередніми, при цьому визначають дві числові послідовності: На другому етапі обчислюють величини
Величина Третій етап полягає в перевірці гіпотез: – чи можна вважати випадковим відхилення величини – відхилення величини Ця перевірка проводиться з використанням розрахункових значень
де Для зручності є табульовані значення величин
Таблиця 12.5. Значення
На четвертому етапі розрахункові значення Приклад визначення наявності тренду методом Фостера-Стьюарта наведений в п. 12.4.
|