Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Пример №4
К решению четвертой задачи первой контрольной работы следует приступить после изучения тем 1.8 и 1.9 и тщательного разбора приведенных в данном пособии примеров. В задачах рассматривается равнопеременное движение точки, поэтому, прежде чем приступить к решению этой задачи, надо четко представлять, что такое скорость и ускорение движения точки, знать, какие существуют виды движения точки, знать, какие существуют виды движения точки в зависимости от ускорения. Напомним, что ускорение — векторная величина, которая характеризует быстроту изменения скорости как по модулю, так и по направлению. Ускорение, характеризующее быстроту изменения числового значения скорости, называют касательным, а по направлению — нормальным. Касательное ускорение аτ всегда направлено по касательной к траектории в рассматриваемый момент времени. Если числовое значение скорости с течением времени остается неизменным, то касательное ускорение отсутствует. Это случай так называемого равномерного движения. Движение с постоянным касательным ускорением называется равнопеременным. Нормальное ускорение аn всегда направлено по радиусу к центру кривизны траектории. Если точка движется прямолинейно, то скорость по направлению не меняется, значит нормальное ускорение отсутствует. Надо хорошо знать формулы, связывающие пройденный путь, скорость, ускорение и время. Решение всех задач для большей наглядности целесообразно иллюстрировать рисунками. Задание: Точка, движется равноускоренно из состояния покоя и за время t = 10 с проходит путь s = 300 м. Найти скорость и полное ускорение в конце 10 —й секунды от начала движения, если движение происходит по дуге окружности радиуса r =400 м. Решение. Из условий задачи следует, что мы имеем дело с частным случаем равноускоренного движения — движения без начальной скорости, т.е. J0=0. Для этого случая формулы пути (s, строго говоря, не путь, а расстояние точки от ее начального положения, и в общем случае движения эти два понятия не совпадают. Но в частном случае, когда точка все время движется в одном направлении и начало ее движения совпадает с началом отсчета расстояния, понятия пути и расстояния совпадают. В примерах, приведенных в данном пособии, пройденные точкой путь и расстояния одинаковы) и скорости упрощаются:
Выразив из формулы пути ускорение и подставив значения входящих величин, получим
Задано, что движение равноускоренное, значит касательное ускорение постоянно и, следовательно, в конце 10 — й секунды остается таким же. Для вычисления нормального ускорения необходимо знать скорость точки и радиус кривизны траектории в данный момент времени. Найдем скорость:
Теперь можно вычислить нормальное ускорение:
Полное ускорение найдем из формулы
На рисунке 4 изображен участок траектории (точка О соответствует началу движения точки, точка А — концу рассматриваемого движения), а также векторы скорости, ускорений в начале и конце движения. Задание: При равнопеременном движении точки по дуге окружности радиуса r = 500 м и на пути s = 1200 м ее скорость уменьшается с 30 до 10 м/с. Найти время движения и пройденный путь до полной остановки точки. Решение. В задаче дано изменение скорости на пути s = 1200 м. Ни из формулы пути, ни из формулы скорости непосредственно нельзя найти касательное ускорение или время этого движения.
Запишем обе формулы:
Из (2) aτ t=J-J0 Подставим полученное выражение в (1) и выразим время t:
, откуда
, тогда
Найдем касательное ускорение:
Вычислим время движения точки до остановки, обозначив его через tк. Из формулы скорости имеем Jк = J0 + аτ tк, но Jк = 0 тогда 0 = J0 + aτ tk, откуда tk = -J0/аℓ = -30/-0, 33 = 90с. Теперь можно найти полный путь, пройденный точкой до остановки:
|