Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Теорема Максвелла—Мора.
Прогиб балки в точке приложения сосредоточенной силы Р равен: аналогичное выражение мы имеем и для угла поворота с заменой производной на . Выясним, что представляют собой эти производные. Если на балке расположена какая угодно нагрузка из сосредоточенных сил , , ,..., моментов , ,..., сплошных нагрузок , ..... то момент М(х) в любом сечении такой балки выражается линейной функцией от нагрузок: Рис.2. Частная расчетная модель метода Максвелла — Мора.
Коэффициенты , ,..., , …, , ... являются функциями пролета балки, расстояний точек приложения сил и моментов от опор и абсциссы х взятого сечения. Пусть мы отыскиваем прогиб точки приложения силы ; тогда так как , ,..., , ,..., , ..., , ,..., , …, , ... при этом дифференцировании постоянны. Но можно рассматривать как численную величину момента М в любом сечении балки от действия так называемой единичной нагрузки, т. е. силы ; действительно, подставляя в формулу вместо его частное значение, единицу, и приравнивая все остальные нагрузки нулю, получаем . Например, для балки, изображенной на Рис2, а, изгибающий момент равен: Производная ; но это как раз и будет выражение изгибающего момента нашей балки, если мы ее нагрузим силой 1, приложенной в той же точке В, где расположена сила Р (Рис.2, б), и направленной в ту же сторону. Аналогично, производная изгибающего момента М (х) по паре сил численно представляет собой изгибающий момент от пары с моментом, равным единице, приложенной в том же сечении, где имеется пара , и направленной в ту же сторону. Таким образом, вычисление производных изгибающего момента можно заменить вычислением изгибающих моментов от единичной нагрузки. Эти моменты мы будем обозначать буквой . Таким образом, для отыскания перемещения (прогиба или угла поворота) любого сечения балки, вне зависимости от того, приложена или не приложена в этом сечении соответствующая сила, необходимо найти выражение для изгибающего момента М от заданной нагрузки и момента от соответствующей единичной нагрузки, приложенной в сечении, где ищем перемещение ; тогда это перемещение выразится формулой Эта формула была предложена Максвеллом в 1864 г. и введена в практику расчета О. Мором в 1874 г. Если мы в полученном выражении под подразумеваем прогиб, то момент надо вычислять от сосредоточенной единичной силы, приложенной в той точке, где мы отыскиваем прогиб; при вычислении же угла поворота в качестве единичной нагрузки прикладывается пара сил с моментом, равным единице. Для примера рис.2 имеем:
Знак плюс означает, что направление перемещения совпадает с направлением единичной нагрузки, знак минус — наоборот. Если при определении изгибающих моментов придется делить балку на участки, то соответственно и интеграл в формуле распадется на сумму интегралов. Сравнивая формулу Кастильяно с формулой Мора, нетрудно заметить, что они отличаются лишь одним множителем. В теореме Кастильяно или , в теореме Мора . Следовательно, производная от изгибающего момента по обобщенной силе — это то же самое, что изгибающий момент от силы .
|