Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Конструктивные особенности М. с. 8 страница
Нек-рые исследователи относят к М. и тектиты, своеобразные стеклянные тела, к-рые находят в разных местах земной поверхности. Однако условия образования тектитов и вообще их природа отличают их от М. См. также Метеоритика. Лит.: Кринов Е. Л., Основы метеоритики, М., 1955; Мэй сон Б., Метеориты, пер. с англ., М., 1965; В у д Дж., Метеориты и происхождение солнечной системы, пер. с англ., М., 1971; 3 а в а р и ц к и и А. Н., К в а ша Л. Г., Метеориты СССР, М., 1952; Метеоритика. Сб. ст., в. 1 - 30, М., 1941 - 70; Н е id е F., Kleine Meteoritenkunde, В., 1957; The Solar System, ed. G. P. Kniper, B. Midd-lehurst, v. 4, [N. Y.], 1963; Hey М. Н., Catalogue of Meteorites, 3 ed., L., 1966. Е. Л. Кринов. МЕТЕОРНАЯ АСТРОНОМИЯ, раздел астрономии, посвящённый изучению структуры, происхождения и эволюции метеорного вещества в межпланетном пространстве. Исследование структуры и движения метеорного вещества ведётся путём оптич. и радиолокац. наблюдений метеоров, наблюдений Зодиакального Света, регистрации ударов метеорных тел с помощью датчиков, установленных на искусств, спутниках Земли и космических зондах, изучения движения метеорных потоков методами небесной механики. В СССР работы по М. а. ведутся в Москве, Душанбе, Киеве, Одессе, Харькове, Казани; за рубежом в США (Гарвардская и Смитсоновская обсерватории), в ЧССР, Великобритании, Австралии. МЕТЕОРНАЯ ИОНИЗАЦИЯ, ионизация в верхней атмосфере, обусловленная вторжением в неё метеорного вещества. Активная М. и. происходит в основном при столкновениях испарившихся и распылённых метеорных атомов с молекулами воздуха. Среднее число свободных электронов, порождаемых одним метеорным атомом, пропорционально примерно 4-й степени его скорости и в интервале метеорных скоростей 11-73 км/сек изменяется от 0, 001 до 1. Активная М. и. наиболее интенсивна на высотах 80-120 км, где в основном испаряются метеорные тела. Выше 120 км активная М. и. вызывается распылёнными метеорными атомами и отлетающими после столкновения с метеорным телом атмосферными молекулами. Др. источником ионов метеорного происхождения является ионизация постоянно присутствующих в верхней атмосфере метеорных атомов под действием солнечного излучения и в результате перезарядки ионов. При масс-спектрометрич. измерениях ионного состава верхней атмосферы, выполненных с помощью ракет, обнаружены метеорные ионы Mg+, Si+, Ca+, Fe+ и др. на высотах 80-180 км. Наибольшая концентрация метеорных ионов (102-104 в 1 см3) наблюдается на высотах 80-120 км, где она может быть сравнимой с концентрацией осн. атмосферных ионов NO+ и Ог+. Рекомбинация атомарных метеорных ионов протекает значительно медленнее, чем молекулярных атмосферных ионов, поэтому М. и. играет существенную роль в поддержании ночной ионизации области Е ионосферы и в образовании спорадических слоев Es (в слоях Es с высокой электронной концентрацией метеорные ионы могут быть доминирующими). М.и. обусловлена в основном спорадическими метеорными телами и во время действия ежегодных метеорных потоков увеличивается незначительно. М.и. сильно возрастает во время метеорных дождей; напр., во время метеорного дождя Драконид 10 окт. 1946 ионосферными станциями было отмечено образование слоя Еа. После пролёта метеора остаётся ионизованный след длиной до неск. десятков км с начальным диаметром до неск. м. Ионизованный метеорный след быстро расширяется под действием диффузии. Электронная концентрация в следе уменьшается также вследствие рекомбинации и прилипания электронов к нейтральным атомам атмосферы. Ионизованные метеорные следы отражают радиоволны ультракоротковолнового и коротковолнового диапазонов, что используется в системах метеорной радиосвязи, а также для радиолокац. исследований метеоров и верхней атмосферы. См. также Метеоры. Лит.: Истомин В. Г., Ионы внеземного происхождения в ионосфере Земли, " Искусственные спутники Земли", 1961, в. 11, с. 98; Кащеев Б. Л., Лебединец В. Н., Лагутин М.Ф., Метеорные явления в атмосфере Земли, М., 1967. В. Н. Лебединец. МЕТЕОРНАЯ ПЫЛЬ, мельчайшие твёрдые частицы, размером от нескольких мкм до долей мм, возникающие в результате абляции метеорных тел при прохождении их через земную атмосферу. Из М. п. состоят следы болидов. См. Метеориты. МЕТЕОРНАЯ РАДИОСВЯЗЬ, вид радиосвязи, при к-рой используется отражение радиоволн от ионизованных следов метеорных частиц. М. р. применяется сравнительно редко, гл. обр. для передачи информации (напр., телеграфных сообщений) двоичным кодом и для сверки разнесённых устройств точного времени путём встречного обмена контрольными сигналами (см. Служба времени). Пролетая в атмосфере, метеорные частицы оставляют следы ионизов. газа, часть к-рых имеет концентрацию электронов, достаточную для эффективного отражения радиоволн метрового диапазона (см. Распространение радиоволн). Это явление позволяет осуществлять М. р. при помощи относительно маломощных передатчиков (порядка 1 кет) и простых антенн с усилением 6-18 дб на расстояния до 1700-1800 км без ретрансляции. Для этого передатчики обоих корреспондентов облучают некоторую зону на высоте ок. 100 км над поверхностью Земли. При соответствующей ориентации следа образуется двухсторонний канал связи (рис.) с шириной полосы частот в неск.десятков или сотен кгц в зависимости от мощности передатчиков, чувствительности приёмников и допустимого влияния эффектов многолучевого распространения радиоволн. При достаточном энерге-тич. потенциале линии М. р. эффективные отражения наблюдаются регулярно - обычно неск. раз в 1 мин со средней длительностью неск. десятых долей сек. Применяя скорость передачи 5- 10 тыс. двоичных знаков в 1 сек, можно в течение этих коротких интервалов времени, составляющих в сумме несколько процентов от общего времени связи, передать относительно большой объём информации. Так, линия М. р., работающая на частоте ок. 40 Мгц, может обладать ёмкостью, достаточной для непрерывной устойчивой работы одного или неск. телетайпов. Вследствие слабого поглощения метровых волн в ионосфере и особенностей механизма распространения волн при М. р. она значительно меньше подвержена влиянию ионосферных возмущений, чем радиосвязь на декаметровых волнах, и обладает относительно высокой направленностью (даже при слабонаправленных антеннах) и поэтому менее подвержена действию помех, создаваемых удалёнными радиоустройствами. Прерывистый характер образования канала связи требует применения спец. методов передачи и приёма сообщений. Поступающие сообщения накапливаются и затем передаются порциями с большой скоростью в те короткие интервалы времени, когда образуется двухсторонний канал связи. Принятые порциями сообщения также сначала накапливаются, а затем с обычной скоростью поступают в регистрирующий аппарат. Кроме накопителей, специфич. элементами являются анализаторы принятых сигналов, определяющие их пригодность для связи, и системы сопряжения порций принятых сообщений, исключающие потери или повторный приём сообщений на стыках между порциями. Для обеспечения достоверности передачи применяют методы автоматич. обнаружения и исправления ошибок. Лит.: Метеорная радиосвязь на ультракоротких волнах. Сб. ст., под ред. А. Н. Казанцева, М., 1961; Бондарь Б. Г., Кащеев Б. Л., Метеорная связь, [К., 1968]. А. А. Магазаник. Схема двухсторонней метеорной связи: / - метеорный след ионизованного газа; 2 - источник сообщений (передающий телеграфный аппарат); 3 - приёмник сообщений (приёмный телеграфный аппарат); 4 - накопитель-ускоритель передающего тракта; 5 - накопитель-замедлитель приёмного тракта; 6 - системы анализа, сопряжения и управления; 7 - передатчик метровых волн; S - приёмник метровых волн; 9 - передающая антенна; 10 - приёмная антенна. МЕТЕОРНОЕ ВЕЩЕСТВО в межпланетном пространстве, твёрдые тела (метеорные тела), более мелкие, чем малые планеты и кометы, движущиеся вокруг Солнца. При встрече с Землёй метеорные тела порождают метеоры и выпадают на земную поверхность в виде метеоритов. Мельчайшие метеорные тела интенсивно рассеивают солнечный свет и наблюдаются в виде Зодиакального Света. По фотографич. и радиолокац. наблюдениям определены орбиты неск. десятков тысяч метеорных тел. Подавляющее большинство их движется по эллип-тич. орбитам вокруг Солнца. Не обнаружены метеорные тела с безусловно ги-перболич. орбитами, т. е. пришедшие в окрестность Солнца из межзвёздного пространства. М. в. концентрируется в плоскости эклиптики и имеет преимущественно прямое движение, т. е. то же направление, в к-ром движутся планеты. Движение метеорных тел определяется гравитац. притяжением Солнца и планет, а также негравитац. силами, возникающими в результате взаимодействия метеорных тел с электромагнитным и корпускулярным солнечным излучением (световое давление, эффект Пойнтинга - Робертсона и др.). Световое давление может выталкивать из Солнечной системы мельчайшие метеорные тела размерами менее 10-4 см. Под действием Пойнтинга - Робертсона эффекта постепенно уменьшаются размеры и эксцентриситет орбиты (тем быстрее, чем меньше метеорное тело и размеры орбиты), и метеорное тело по спирали приближается к Солнцу. На пути к Солнцу оно может быть захвачено планетами; наиболее эффективен захват Юпитером. Этот " барьер" Юпитера могут пройти только очень мелкие метеорные тела. Время жизни метеорных тел во внутр. областях Солнечной системы (внутри орбиты Юпитера) много меньше возраста Солнечной системы, следовательно М. в. здесь должно постоянно пополняться. Возможны различные источники М. в.: распад комет, дробление малых планет, приток очень мелких метеорных тел с периферии Солнечной системы и др. Значит, большинство крупных метеорных тел имеет орбиты, сходные с орбитами комет (преимущественно коротко-периодических), и, по-видимому, образуется при распаде комет. Комплекс орбит более мелких метеорных тел, наблюдаемых только радиолокац. методами, более сложен, однако меньшая точность и большая избирательность радиолокац. наблюдений метеоров не позволяют сделать однозначного вывода о происхождении таких тел. Около половины ярких метеоров, наблюдаемых фотографич. путём, относится к метеорным потокам, остальные - к спорадич. метеорам; среди более слабых метеоров доля принадлежащих метеорным потокам убывает. Лит. см. при ст. Метеоры. В. Н. Лебединец. МЕТЕОРНОЕ ТЕЛО, относительно небольшое твёрдое тело, движущееся в кос-мич. пространстве. Совокупность М. т., обращающихся вокруг Солнца, образует метеорное вещество в межпланетном пространстве. М. т. представляют собой продукты распада комет или обломки малых планет и при своём движении иногда встречаются с Землёй и др. планетами. См. Метеоры, Метеориты. МЕТЕОРНЫЙ ДОЖДЬ, метеорный поток с кратковременной очень высокой численностью метеоров (до 1000 и более в 1 мин). За последние 200 лет наблюдались следующие М. д.: Андро-медиды (1872 и 1885), Дракониды (1933 и 1946) и Леониды (1799, 1833, 1866 и 1966). МЕТЕОРНЫЙ ПАТРУЛЬ, система неск. фотографических агрегатов, предназначенная для наблюдений метеоров. Каждый агрегат М. п. состоит обычно из 4-6 широкоугольных фотографич. камер, устанавливаемых так, чтобы все они вместе охватывали возможно большую область неба. Так, напр., М. п. Ин-та астрофизики АН Таджикской ССР состоит из 4 агрегатов, каждый с 6 фотографич. камерами (диаметр объектива D = 10 см, фокусное расстояние F = 25 см), охватывающими область кеба от зенита до зенитного расстояния 50-55° во все стороны. В основном пункте установлены 3 агрегата: один из них смонтирован на параллактич. монтировке (см. Монтировка телескопа), позволяющей получать точечные изображения звёзд; перед объективами другого установлен двухлопастный обтюратор, вращающийся со скоростью 1500 об! мин и прерывающий след метеора на фотопластинке; перед объективами третьего агрегата помещаются призмы с преломляющим углом в 25° для фотографирования спектра метеора. Четвёртый агрегат установлен на расстоянии 34 км от первых. Совместная обработка снимков метеора, полученных на всех агрегатах М. п., позволяет определить момент пролёта, высоту (с точностью ± 100 м), скорость (с точностью 0, 4%), радиант (с точностью до 3'), массу и химич. состав метеора. С целью получения наибольшего числа метеорных снимков фотографирование (патрулирование) неба проводится непрерывно всю ночь со сменой кадров через каждые 0, 5-1 ч. См. также Метеоры. Лит.: Бабаджанов П. Б., Крамер Е. Н., Методы и некоторые результаты фотографических исследований метеоров, М., 1963; Катасев Л. А., Исследование метеоров в атмосфере Земли фотографическим методом, Л., 1966. П. Б. Бабаджанов. МЕТЕОРНЫИ ПОТОК, совокупность метеоров, возникающих в атмосфере при встрече Земли с метеорным роем -метеорными телами, движущимися по близким орбитам и связанными общностью происхождения. Иногда М. п. наз. также и сам метеорный рой, порождающий данный М. п. Траектории всех метеоров потока почти параллельны и кажутся расходящимися приблизительно из одной точки - радианта М. п. Потоки с большим числом метеоров наз. по созвездиям, в к-рых расположены их радианты, или по ближайшим ярким звёздам. М. п. наблюдаются примерно в одни и те же даты (ежегодно или через большее число лет). По визуальным наблюдениям 19 и 20 вв. было выделено неск. сотен ночных М. п. Радиолокац. наблюдения метеоров позволили изучать также дневные М. п. По фотографич. и радиоло-кац. наблюдениям определены орбиты нескольких сотен метеорных роёв; большинство из них сходно с орбитами комет (преим. короткопериодических). Орбиты неск. десятков метеорных роёв близки к орбитам известных комет; довольно уверенно установлена связь метеорных роёв с известными кометами примерно в 15 случаях. Метеорные рои образуются при распаде ядер комет и первоначально движутся компактной группой, занимая лишь часть орбиты кометы. При встрече с Землёй такие молодые компактные рои порождают кратковременные М. п. с очень высокой численностью метеоров - метеорные дожди. Под действием гра-витац. возмущений со стороны планет, Пойнтинга - Робертсона эффекта и др. факторов метеорный рой постепенно растягивается вдоль орбиты, расширяется и в конечном счёте распадается. Нек-рые из наблюдаемых в наст, время М. п. (напр., Лириды и Персеиды) известны уже неск. тыс. лет. Нек-рые метеорные рои, ранее порождавшие активные М. п. (напр., Андромедиды и Боотиды), удалились от орбиты Земли вследствие планетных возмущений. Лит. см. при ст. Метеоры. В. Н. Лебединец. МЕТЕОРНЫИ РАДИОЛОКАТОР, аст-рономич. инструмент для радиол окац. наблюдений метеоров в атмосфере Земли; радиотехнич. комплекс, включающий передающую, приёмную и регистрирующую аппаратуру. Большинство М. р. работает на частотах 15-500 Мгц в импульсном или непрерывном режиме с ав-томатич. выделением полезного сигнала на фоне случайных помех. М. р. позволяет регистрировать координаты отражающих точек метеорных следов с точностью до ± 0, 3°, скорость их дрейфа под влиянием ветров в верхней атмосфере, длительность отражения, скорости (с точностью до ± 5%) и радианты (с точностью до ± 5°) метеоров и т. п. По сравнению с др. средствами наблюдений метеоров преимущества М. р. заключаются в том, что с его помощью регистрируются слабые метеоры, недоступные др. видам наблюдений (до 15-й звёздной величины), причём в любое время суток и при любой погоде. Результаты наблюдений с помощью М. р. используются для исследования метеоров, свойств земной атмосферы на высоте 80-120 км, а также для изучения метеорного вещества в околоземном космическом пространстве. См. также Метеоры. Лит.: фиалко Е. И., Радиолокация, метеоров, М., 1967; Кащеев Б. Л., Леб'единец В. Н., Лагутин М. Ф., Метеорные явления в атмосфере Земли, М., 1967. П. Б. Бабаджанов. МЕТЕОРНЫИ СЛЕД, след в атмосфере, остающийся после пролёта метеора. Различаются М. с. двух видов: пылевые и газовые, или ионизованные. Пылевые следы образуются только яркими болидами на вые. 25-80 км в результате конденсации паров метеорного вещества в голове и следе болида, а также затвердевания капелек расплавленного вещества, сдуваемого с поверхности метеорного тела. В сумерки пылевые М. с. светятся вследствие рассеяния солнечного света в основном на мельчайших пылинках (размером меньше 10~4 см). Пылевые М. с. могут наблюдаться очень долго - до неск. часов. Ионизованные М. с. светятся вследствие рекомбинац. процессов, в их спектре наблюдаются линии Mg, Na, Ca, Fe и др. Ионизованные М. с. образуются всеми метеорами, однако невооружённым глазом видны только следы ярких метеоров. Ионизо- Главные метеорные потоки
ванные М. с. наблюдаются от долей секунды до неск. минут. Отражение радиоволн от ионизованных М. с. позволяет вести их радиолокац. наблюдения. Первоначально прямолинейный и тонкий, М. с. быстро искривляется и расширяется под действием ветра и диффузии. Оптич. и радиолокац. наблюдения М. с. являются одним из основных средств изучения циркуляции и турбулентности атмосферы на вые. 80- 110км. См. также Метеорная ионизация. В. Н. Лебединец. МЕТЕОРОГРАФ (от греч. meteoros-поднятый вверх, небесный, meteora -атмосферные и небесные явления и ...граф), прибор для одновременной регистрации темп-ры, давления и влажности воздуха, а иногда и скорости воздушного потока; поэтому М. как бы объединяет термограф, барограф, гигрограф, а при необходимости и анемограф. Их показания при помощи стрелок (рис.) регистрируются на одной и той же ленте, укреплённой на барабане с часовым механизмом, поэтому на ленте получается синхронная запись изменений темп-ры, давления и влажности с течением времени. При подъёме М. в свободную атмосферу по записи на ленте с помощью барометрической формулы можно определить высоты, соответствующие различным моментам подъёма, и установить числовые значения метеорологич. элементов на этих высотах. Схема самолётного метеорографа: 1 - волосной гигрометр; 2 - анероидныекоробки; 3 - биметаллическая пластинка термографа. Различают зондовые М., поднимаемые в атмосферу на шарах-зондах, змейковые - на аэрологич. змеях, аэростатные и самолётные; чаще всего применяются аэростатные и самолётные М. Самолётные М. устанавливаются под крылом тихоходного самолёта в спец. раме. Для введения поправок, связанных с трением воздушного потока, в показания датчиков темп-ры и влажности регистрируется скорость потока в шахте прибора. При зондировании атмосферы на скоростных самолётах используется электрометеорограф. М., передающий свои показания во время подъёма с помощью радиосигналов, наз. радиометеорографом. Лит.: Белинский В. А. и П о б и я-хо В. А., Аэрология, Л., 1962; Непомнящий С. И. и Мануйлов К. Н., Самолетный метеорограф. М., 1956. С. И. Непомнящий. МЕТЕОРОЛОГИЧЕСКАЯ БУДКА, психрометрическая будка, будка, в к-рой на метеорологич. станции устанавливают психрометр, гигрометр, максимальный и минимальный термометры. М. б. представляет собой деревянную будку белого цвета с жалюзи (рис.) для свободного доступа воздуха к приборам. Она защищает приборы от дождя, снега, прямого действия лучей солнца, излучения почвы. Устанавливается на стойках так, чтобы резервуары психро-метрич. термометров в ней находились на высоте 2 м. Метеорологическая будка с приборами. МЕТЕОРОЛОГИЧЕСКАЯ ОБСЕРВАТИРИЯ, научно-технич. учреждение, в котором ведут метеорологич. наблюдения и исследования метеорологич. режима на территории области, края, республики, страны. Нек-рые М. о. изучают состояние свободной атмосферы, для чего проводят аэрологич. наблюдения с помощью радиозондов, поднимаемых на воздушных шарах, высокие слои атмосферы исследуют аппаратурой, запускаемой на метеорологических ракетах. Для исследования облаков и осадков применяют метеорологич. радиолокаторы и специально оборудованные летающие лаборатории на самолётах. В 1956 большинство М. с. в СССР преобразовано в гидрометеорологические обсерватории. И. В. Кравченко. МЕТЕОРОЛОГИЧЕСКАЯ РАКЕТА, ракета для подъёма в высокие слои атмосферы исследовательских приборов, измеряющих структурные параметры атмосферы (темп-ру, давление, плотность, состав воздуха) и направление ветра. М. р. имеет ограниченный потолок подъёма (100-150 км) и сравнительно малую массу (до 300-400 кг). Наиболее часто применяются М. р. массой до 80 кг с высотой подъёма приблизительно 65-70 км. Запуски М. р. производят в различных географич. районах, включая Арктич. и Антарктич. зоны, как с наземных пунктов, так и с кораблей. М. р. состоит из двух частей: двигат. установки и отделяемой головной части с измерит, аппаратурой. На подъёме полёт происходит обычно со сверхзвуковыми скоростями, в связи с чем измерит, аппаратура должна обладать малой инерционностью и высокой прочностью по отношению к перегрузкам и вибрации. На спуске в ряде вариантов М. р. применяют парашют для уменьшения скорости движения (что повышает точность измерений, позволяет определить скорость и направление ветра) и спасения аппаратуры. Высокая скорость движения М. р. оказывает существ, влияние на многие измеряемые параметры, для чего соответствующие датчики размещают в аэродинамически наименее возмущённых зонах. Влияние возмущения учитывается с помощью спец. теоретич. или полуэмпирич. соотношений. Темп-pa атмосферы измеряется термометрами сопротивления, микротермо-сопротивлениями или с помощью 2 манометров с последующим расчётом по соответствующим формулам. Широко применяется и звукометрич. метод определения темп-ры, основанный на измерении скорости распространения звука от по-следоват. взрывов гранат, выбрасываемых из ракеты. Давление и плотность атмосферы определяются манометрами различного типа: мембранными, тепловыми, ионизационными и магнитоэлектрическими. Переход от показаний манометров к давлению свободной атмосферы осуществляется с помощью полуэмпирич. соотношений. Кроме того, для определения плотности применяют метод падающих шаров, скорость падения к-рых однозначно связана с плотностью атмосферы. Горизонтальный снос шара позволяет определить скорость и направление ветра. Эти величины измеряются также радиолокационным прослеживанием дрейфа головной части ракеты, опускающейся на парашюте, или локацией ме-таллич. фольги, выбрасываемой из ракеты. Относит, состав атмосферы определяется, как правило, масс-спектромет-рич. методами. Сигналы датчиков измерит, приборов поступают через коммутац. устройства на вход передатчика радиотелеметрической системы (см. Телеметрия). Приём и регистрация сигналов осуществляются наземной телеметрич. станцией. Измерения траектории М. р. производятся кинотеодолитами, баллистич. камерами, радиолокаторами (активное и пассивное прослеживание), радиодоплеровскими системами. Методика обработки полученных данных весьма сложна, требует знания различного рода вспомогат. параметров, в первую очередь - аэродина-мич. коэффициентов; поэтому для обработки данных широкое применение находит машинно-вычислит. техника. Лит.: Калиновский А. Б., П и-н у с Н. 3., Аэрология, ч. 1, Л., 1961; Кондратьев К. Я., Метеорологические исследования с помощью ракет и спутников, Л., 1962; Ракетные исследования верхней атмосферы. [Сб. статей], под ред. Р. Л. Ф. Бой-да, М. Дж. Ситона, пер. с англ., М., 1957: М е с с и X. С. В., Б о и д Р. Л. Ф., Верхняя атмосфера, пер. с англ.. Л., 1962; Гай г е-ров С. С., Исследования синоптических процессов в высоких слоях атмосферы. Л., 1973. Г. А. Кокин. МЕТЕОРОЛОГИЧЕСКАЯ СЕТЬ, совокупность метеорологич. станций, ведущих наблюдения по единой программе и в строго установленные сроки для изучения погоды, климата и решения др. прикладных и научных задач. В каждой стране основная гос. М. с. входит, как правило, в состав метеорологич. службы (в СССР - в состав Гидрометеорологической службы СССР). Кроме метеорологич. станций, в гос. М. с. входят специализированные станции (аэрологич., актинометрич., агрометеорологич., на морских судах и др.). Всего в СССР (на 1 янв. 1973) ок. 4000 станций и ок. 7500 наблюдат. постов. Наряду с общегос. М. с. имеются станции и посты спец. назначения, к-рые ведут наблюдения по программам, согласованным с Гидрометслужбой СССР, и находятся в ведении министерств и ведомств. МЕТЕОРОЛОГИЧЕСКАЯ СТАНЦИЯ, учреждение, к-рое проводит регулярные наблюдения за состоянием атмосферы. Наблюдения включают измерения значений метеорологических элементов в установленные сроки и определение основных характеристик (начало, окончание и интенсивность) атм. явлений. Первые М. с. стали создаваться ещё в 18 в., когда отд. учёные или научные об-ва начали проводить систематич. наблюдения за погодой. В 19 в. после учреждения центр, метеорологич. ин-тов, в частности Главной физической обсерватории в Петербурге (1849), М. с. получили единое руководство, а также общую программу наблюдений. В состав М. с. входит метеорологич. площадка, где устанавливается большинство приборов (психрометрич. будка с термометрами и гигрометрами, приборы для измерения скорости и направления ветра, осадкомер, почвенные термометры и др.), служебное здание, в к-ром находятся барометры, регистрирующие части дистанционных приборов, переносные приборы и где ведётся обработка наблюдений. Наблюдения проводятся по стандартной программе в течение 10-минутного интервала времени через каждые 3 или 6 часов, а в нек-рых случаях ежечасно. Полученные данные кодируют (см. Метеорологический код) и передают в виде цифровой сводки в установленные адреса (бюро погоды, авиационные метеостанции и т. п.). Многие М. с. наряду со стандартными ведут агрометеорологич. наблюдения, определяют интенсивность солнечной радиации (прямой, рассеянной и суммарной), радиационный баланс, величину испарения почвенной влаги и др. М. с. устанавливают также на судах; автоматич. М. с.-на буях в открытом море и в необитаемых районах суши. Данные наблюдений М. с. используются для составления прогнозов погоды и предупреждений о неблагоприятных для нар. х-ва явлениях погоды, изучения климата и его изменений, а также для непосредственного обеспечения обслуживаемых организаций сведениями о погоде. В СССР основная сеть М. с. входит в состав Гидрометеорологической службы СССР. Лит.: Наставление гидрометеорологическим станциям и постам, 4 изд., в. 3, Л., 1969. И. В. Кравченко. МЕТЕОРОЛОГИЧЕСКИЕ ЖУРНАЛЫ (точнее метеорологические и климатологические журналы), периодические научные издания, освещающие вопросы метеорологии, климатологии и гидрологии. В СССР наиболее известными и распространёнными журналами являются: " Метеорология и гидрология* (с 1935), -" Известия АН СССР. Физика атмосферы и океана" (с 1965), " Реферативный журнал. Метеорология и климатология" (в составе томов: РЖ " Геофизика" с 1957 и " География" с 1956). Проблемы климатологии освещаются также в журналах: " Известия Всесоюзного географического общества" (с 1865), " Известия АН СССР, серия географическая" (с 1937). За рубежом основными М. ж. являются: международные - " Tellus" (Stockh., с 1949); " Archiv fur Meteoro-logie, Geophysik und Bioklimatologie", Serie A, Serie В (W., с 1948), " Boundary-Layer Meteorology" (Dordrecht, с 1971); " International Journal of Вiometeorology" (Leiden, с 1957); " Beitrage zur Physik der freien Atmosphare" (BRD, Frankfurt am Main, с 1904). В США выходят " Journal of Atmospheric Sciences" (Lancaster, с 1944), " Journal of Applied Meteorology" (Lancaster, с 1962), " Monthly Weather Review" (Wash., с 1873), " Bulletin of the American Meteorological Society"
|