Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Временная зависимость прочности. 50 страница






Характерный для теории управляющих систем вопрос о сложности этих систем естественно возникает и по отношению к формулам и функциям из М. л. Типичной при таком подходе является след, задача о сложности реализации. На множестве всех элементарных формул нек-рым способом вводится числовая мера (сложность формул), к-рая затем распространяется на множество всех формул, напр., путём суммирования мер всех тех элементарных формул, к-рые участвуют в построении заданной формулы. Требуется для заданной функции указать ту формулу (простейшую), к-рая реализует эту функцию и имеет наименьшую сложность, а также выяснить, как эта сложность зависит от нек-рых свойств рассматриваемой функции. Исследуются различные обобщения этой задачи. Широкий круг вопросов связан с реализацией функций формулами с наперёд заданными свойствами. Сюда относятся задача о реализации функций алгебры логики дизъюнктивными нормальными формами и связанная с этим задача о минимизации; а также задача о реализации функций формулами в нек-ром смысле ограниченной глубины (т. е. такими формулами, в к-рых цепочка подставляемых друг в друга формул имеет ограниченную длину, такое ограничение связано с надёжностью и скоростью вычислений).

Решения всех перечисленных задач существенно зависят от мощности множества Е и множества М, порождающего заданную модель М. л.

К числу наиболее важных примеров М. л. относятся конечнозначные логики (т. е. ги-значные логики, для к-рых т конечно). Среди них наиболее глубоко исследован случай т = 2. Важнейшим результатом здесь является полное описание структуры замкнутых классов и получение для них важной информации по задаче о сложности реализации. Установлено, что при m > 2 у конечнознач-ных логик возникает ряд особенностей, существенно отличающих их от двузначного случая. Таковы, напр., континуальность множества замкнутых классов (при m = 2 их счётное число), особенности решения задачи о сложности реализации и ряд других. Общим результатом для конечнозначных логик является эффективное решение задачи о полноте для замкнутых классов, содержащих все функции со значениями в Е. Решение остальных проблем для конечнозначных логик продвинуто в различной степени. Особая значимость конечнозначных логик связана ещё и с тем, что они позволяют описывать работу самых различных реальных вычислит, устройств и автоматов.

Примерами др. М. л. являются с ч ё т-нозначные и континуум-з н а ч н ы е логики (т. е. такие т-знач-ные логики, для к-рых мощность т является, соответственно, счётной или континуальной). Эти модели играют важную роль в матем. логике, моделей теории и в математическом анализе. К М. л. иногда относят и такие алгебры функций, в к-рых запас операций несколько отличается от указанного. Как правило, это достигается путём сужения описанного запаса или введения в операции нек-рых функций рассматриваемой М. л.

Лит.: Яблонский С. В., Гаври-л о в Г. П., Кудрявцев В. Б., Функции алгебры логики и классы Поста, М., 1966; Яблонский С. В., Функциональные построения в fe-значной логике, " Тр. Матем. ин-та АН СССР", 1958, т. 51, с. 5-142.

В. Б. Кудрявцев.

МНОГОЗНАЧНАЯ ФУНКЦИЯ, функция, принимающая неск. значений для одного и того же значения аргумента. М. ф. появляются при обращении однозначных функций, повторяющих свои значения. Так, функция х2 принимает каждое положительное значение дважды (при значениях аргумента, различающихся только знаком); обращение её даёт
[ris]

МНОГОЗНАЧНОСТЬ СЛОВА, полисемия, наличие у слова более чем одного значения, т. е. способность одного слова передавать различную информацию о предметах и явлениях внеязыковой действительности. Напр., у слова г о р-л о 4 значения: передняя часть шеи; полость позади рта; верхняя суженная часть сосуда; узкий выход из залива, устье. Во многих языках, в том числе в русском, многозначные слова преобладают над однозначными. М. с. принято отграничивать от омонимии, т. к. значения многозначного слова связаны общими семан-тич. элементами (семантич. признаками) •и образуют определённое семантич. единство (семантич. структуру слова). Различаются первичные и вторичные (производные) значения, к-рые иногда понимаются как прямые и переносные значения. Первичные значения, как правило, наименее контекстно обусловленны. Соотношение между первичными и вторичными значениями с течением времени может меняться. У разных типов слов существуют различные типы М. с., напр, относит. регулярная и нерегулярная М. с.- слова, обозначающие населённые пункты (город, деревня, село, посёлок и т. д.), могут иметь в рус. яз. также значение " жители данного насел, пункта", т. е. следуют определённой семантич. формуле, в то время как вторичные значения, напр. обозначения животных (лев, лиса и т. д.) в применении к людям индивидуальны. Особенности объединения значений в пределах одного слова во многом определяют своеобразие словарного состава каждого языка. Многозначными могут быть также грамматич. формы слова и синтаксич. конструкции. Лит.. 'Виноградов В. В., Основные типы лексических значений слова, " Вопросы языкознания", 1953, № 5; А х м а н о-в а О. С., Очерки по общей и русской лексикологии, М., 1957; Курилович Е., Заметки о значении слова, в его кн.: Очерки по лингвистике, пер. с польск., англ., франц., нем., М., 1962; Ullmann S., The principles, of semantics, 2 ed., Glasgow, 1959.

Д. Н. Шмелёв.

МНОГОЗУБ (Polyodon spathula), рыба семейства веслоносов отряда осетрообраз-ных.

МНОГОЗУБЫЕ БЕЛОЗУБКИ (Sun-cus), род млекопитающих сем. землероек отряда насекомоядных. Длина тела 3-15 см, хвоста - 2, 5-10 см. Представитель рода - малая белозуб-к a (S. etruscus) - самое маленькое млекопитающее. Ок. 20 видов. Распространены в Африке, Юж. Европе, Юж. Азии на В. до Филиппин и Н. Гвинеи. Отдельные виды обитают на лугах и в заболоченных местах, иногда селятся в постройках человека. Питаются гл. обр. насекомыми, нередко мясом, хлебом. Активны ночью. Размножаются круглый год. В помёте 2-5 детёнышей.

Малая белозубка

МНОГОКАМЕРНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ, жидкостный ракетный двигатель (ЖРД) с неск. камерами и общими системами подачи топлива и управления. М. р. д. отличается от однокамерного той же тяги меньшими размерами (длиной), что позволяет выиграть в массе ракеты в целом; имеет преимущества в доводке камеры ракетного двигателя, однако конструкция его сложнее. Иногда неск. камерами снабжается твердотоп-ливный ракетный двигатель для ступенчатого изменения тяги.

МНОГОКАНАЛЬНАЯ СВЯЗЬ, система электросвязи, обеспечивающая одновременную и независимую передачу сообщений от неск. отправителей к такому же числу получателей. М. с. применяется для передачи по кабельным, радиорелейным и спутниковым линиям связи телефонных и телеграфных сообщений, данных телеметрии и команд телеуправления, телевизионных и факсимильных изображений, информации для ЭВМ, в автоматич. системах управления и т. д. Системы М. с. в сочетании с ком-мутац. системами явятся важнейшими составными частями единой автоматизированной системы связи.

Схема образования первичного группового тракта.

В основу построения систем М. с. положен принцип уплотнения линий связи. Наиболее распространено частотное уплотнение, при к-ром каждому каналу связи отводится определённая часть области частот, занимаемой трактом групповой передачи сообщений. В качестве стандартного канала принимается канал тональной частоты (ТЧ), обеспечивающий передачу речевого (телефонного) сообщения с эффективной полосой частот 300-3400 гц. С учётом защитных промежутков между каналами каждому из них отводится номинальная полоса частот 4 кгц. При построении М. с. с частотным уплотнением используется метод объединения стандартных каналов в стандартные групповые тракты. Вначале образуют первичный групповой тракт из 12 стандартных каналов, занимающий полосу частот 60-108 кгц (рис.). Для этого каждый канал посредством своего индивидуального преобразователя частоты (модулятора) переносится в соответствующую область полосы частот первичного тракта. Из 5 первичных групповых трактов аналогичным образом формируется вторичный и т. д. В практике встречаются системы М. с. на 12, 60, 120, 180, 300, 600, 900, 1920, 10 800 стандартных каналов. Такой метод не только существенно облегчает реализацию электрических фильтров, но также обеспечивает более широкие возможности унификации оборудования и др. технич. преимущества. Образование групповых трактов обеспечивает также передачу таких видов информации, к-рые требуют более широкой полосы частот, чем полоса частот стандартного канала: напр., при передаче звукового вещания с полосой частот 50-10 000 гц объединяются 3 стандартных канала, при передаче чёрно-белого и цветного телевиз. изображений используется полоса частот всего четвертичного тракта (900 стандартных каналов). Для передачи сообщений, требующих полосы частот более узкой, чем полоса частот стандартного канала ТЧ (напр., при уплотнении стандартного канала ТЧ низкоскоростными каналами передачи данных), последний с помощью аппаратуры уплотнения разделяют на 24-48 узкополосных каналов. При этом стандартный канал ТЧ становится уплотнённым каналом связи. Такое уплотнение часто наз. вторичным.

Основное достоинство систем М. с. с частотным уплотнением и однополосной модуляцией - экономное использование спектра частот; существенные недостатки - накопление помех, возникающих на промежуточных усилит, пунктах, и, как следствие, сравнительно невысокая помехоустойчивость. От последнего недостатка свободны системы с временным уплотнением и импульсно-кодовой модуляцией (см. Линии связи уплотнение, Импульсная радиосвязь). При построении М. с. большой мощности (по числу каналов) намечается тенденция одно-врем. использования методов частотного и временного уплотнения. Теория и техника М. с. развиваются в направлении повышения помехоустойчивости передачи сообщений и эффективности использования линий связи.

Лит.: Назаров М. В., Кувшинов Б. И., Попов О. В., Теория передачи сигналов, М., 1970; Многоканальная связь, под ред. И. А. Аболица, М., 1971.

М. В. Назаров.

МНОГОКЛЕТОЧНЫЕ организмы, животные и растения, тело к-рых состоит из мн. клеток и их производных (различные виды межклеточного вещества). Характерный признак М.- качественная неравноценность слагающих их тело клеток, их дифференцировка и объединение в комплексы различной сложности (ткани, органы), выполняющие разные функции в целостном организме. Для М. характерно также индивидуальное развитие (онтогенез), начинающееся в большинстве случаев (исключая вегетативное размножение) с делений и диф-ференцировки одной клетки (половой клетки, споры или др.). Ср. Одноклеточные.

МНОГОКОВШОВЫЙ ЭКСКАВАТОР, экскаватор непрерывного действия, рабочий орган к-рого конструктивно объединяет несколько ковшей, перемещающихся по замкнутой траектории. По конструкции рабочего органа различают М. э. цепные и роторные; по способу экскавации - поперечного черпания (направление движения рабочего органа перпендикулярно к направлению движения машины) и продольного черпания (направление движения рабочего органа совпадает с направлением движения машины). Полноповоротные М. э. производят разработку забоев комбинированно, т. е. в поперечном, продольном и -" косом" направлениях.

М. э. используются для выемки пород, не подвергающихся предварительному рыхлению, т. к. только единичные конструкции М. э. могут работать не срезая стружку, а как погрузчики, заполняя ковш рыхлым (сыпучим) материалом на протяжении одной - двух длин ковша. М. э. применяются в комплексе с ж.-д. и конвейерным транспортом, консольными отвалообразователями, транс-портно-отвалъными мостами. См. также Роторный экскаватор. Цепной экскаватор.

Лит.: Домбровский Н. Г., Многоковшовые экскаваторы, М., 1972.

Ю. Д. Буянов.

МНОГОКОРЕННИК (Spirodela), род водных растений сем. рясковых. Включает 1 вид - М. обыкновенный (S. polyrrhiza) - многолетнее растение с округлым видоизменённым стеблем -листецом, плавающим на поверхности воды и несущим пучок мелких корней (отсюда назв.). Цветки однополые, без околоцветника, собраны в соцветие из 1 пестичного и 1 тычиночного цветков. Плод односемянный, невскрывающийся. М. цветёт очень редко; размножается ветвлением листеца. Произрастает в Сев. полушарии; в СССР -почти повсеместно, кроме Крыма и Ср. Азии, в стоячих и медленно текущих водах. Служит кормом для свиней, гусей, уток, кур.

МНОГОКРАТНОГО ЭКСПОНИРОВАНИЯ МЕТОД, метод комбинированной киносъёмки, основанный на совмещении в кадре неск. изображений с помощью последоват. съёмки различных объектов на одну и ту же киноплёнку. Для этого съёмочный аппарат должен иметь хорошую устойчивость изображения в кадровом окне, обратный ход для отмотки киноплёнки, счётчик метров и кадров отснятой киноплёнки. Многократным экспонированием получают изображения в кадрах, в к-рых одни объекты как бы просвечивают через другие (рис.). Эту особенность используют как изобразит, приём для показа воспоминаний, сновидений, а также для плавного перехода в кинофильме от одного монтажного плана или кадра к другому. Для предохранения определённых участков кадра от повторного экспонирования при М. э. м. применяется различного рода маскирование, напр, с использованием чёрного фона, неподвижных и подвижных масок. Маски и контрмаски нужной формы изготавливаются из плотной чёрной бумаги или тонкого картона и устанавливаются в
спец. маскодержателе перед объективом аппарата. В простейшем варианте съёмки на чёрном фоне получают неск. изображений одного и того же объекта в разных участках кадра. Применение маски, неподвижной по отношению к кадровому окну аппарата, даёт возможность съёмки одного актёра в неск. ролях и соединения в кадре естеств. объекта с рисунком или макетом (см. Неподвижной маски

Кадр из кинофильма " Александр Матросов", иллюстрирующий метод многократного экспонирования.
метод). Широко применяются также подвижные, или блуждающие, маски, посредством к-рых при съёмке кинофильмов решаются сложные постановочные и изобразит, задачи (см. Блуждающей маски метод).

Б. Ф. Плужников.

МНОГОКРАТНОЕ ТЕЛЕГРАФИРОВАНИЕ, метод последоват. временного линии связи уплотнения. Принцип М. т. заключается в том, что телеграфные передатчики или приёмники одной станции автоматически поочерёдно соединяются на короткие промежутки времени механич. или электронными распределителями через линию (канал) связи соответственно с телеграфными приёмниками или передатчиками др. станции. Число передатчиков (или приёмников) одной станции определяет кратность передачи. М. т. с использованием механнч. распределителей применялось до нач. 60-х гг. 20 в.; на проводных линиях связи оно постепенно вытеснено телеграфированием при помощи однократных стартстоп-ных аппаратов благодаря появлению в 30-х гг. 20 в. частотного телеграфирования. М. т. с применением электронных распределителей получило распространение с сер. 60-х гг. 20 в. для временного уплотнения телефонных каналов и при передаче телеграмм по радиоканалам. См. также Многократный телеграфный аппарат.

В.В. Новиков.

МНОГОКРАТНЫЙ КООРДИНАТНЫЙ СОЕДИНИТЕЛЬ, коммутационное устройство релейного типа, используемое гл. обр. на городских, сельских, междугородных координатных автома-тич. телефонных станциях и автоматич. телеграфных станциях. Соединитель наз. многократным, потому что в нём может быть одновременно осуществлено неск. (до 20) соединений, и координатным, потому что место каждого соединения определяется точкой пересечения подвижных вертикальных и горизонтальных реек.

Лит.: Кармазов М. Г., Метель-с к и и Г. Б., Автоматическая телефония, М., 1963; Автоматическая коммутация и телефония, под ред. Г. Б. Метельского, ч. 2, М., 1969.

Схема однократного телеграфирования: Эt..., ЭБ - электромагниты приёмника; Еп - источники питания клавиатуры передатчика.

МНОГОКРАТНЫЙ ТЕЛЕГРАФНЫЙ АППАРАТ, применяется при многократном телеграфировании, в основном на радиотелеграфных линиях связи большой протяжённости; он состоит из распределителя с неск. секторами, передатчиков и приёмников для поочерёдной передачи и приёма знаков телеграмм. Изобретение в 1872 первого двукратного аппарата, получившего применение в проводной связи, принадлежит франц. инженеру Ж. Бодо. Принцип действия М. т. а. можно пояснить на примере однократного аппарата Бодо (рис.). Распределитель аппарата представляет собой диск из изоляц. материала с укреплёнными на нём металлич. кольцами. Внеш. кольцо распределителя разрезано на 10 изолиров. контактов, объединённых в 2 сектора. На станции А 5 контактов первого сектора соединены с передатчиком (его клавишами). К контактам второго сектора подключены 5 электромагнитов приёмника. На станции Б - наоборот, к контактам первого сектора подключены электромагниты приёмника, а к контактам второго-клавиши. Внутреннее кольцо соединено с линией связи. Щётки распределителей обеих станций вращаются синхронно и синфазно с частотой 200 об/мин, ограничиваемой инерционностью движущихся частей аппарата.

При вращении в первые пол-оборота щётки последовательно соединяют контакты клавиатуры станции А с электромагнитами приёмника станции Б, а во вторые пол-оборота - контакты клавиатуры станции Б с электромагнитами приёмника станции А. Нажатие клавишей на клавиатуре (в соответствии с комбинацией посылок передаваемого знака) телеграфист производит заранее, когда щётки находятся на секторе приёмника, - по звуковому сигналу, создаваемому тактовым электромагнитом. Посылки тока от клавиатуры станции А поступают на контакты первого сектора внеш. кольца распределителя и через его щётки, линию связи и щётки распределителя станции Б приходят на контакты внеш. кольца первого сектора и в электромагниты приёмника. Последний отпечатывает на бумажной ленте соответствующий знак. Эксплуатац. пропускная способность двукратного аппарата составляет ок. 2000 слов в 1 ч.

Усовершенствованные М. т. а. Бодо применялись до сер. 20 в. В 30-х гг. 20 в. были разработаны трёх-, шести-, девятикратные аппараты, что значительно увеличило пропускную способность телеграфных связей: до 20 000 слов в 1 ч в случае девятикратного аппарата. С 60-х гг. электромеханич. М. т. а. стали вытесняться электронными, снабжёнными устройствами для автоматич. обнаружения и исправления ошибок. Электронные М. т. а. производятся (1974) в СССР, Нидерландах, Швейцарии, ФРГ и др. странах.

В. В. Новиков.

МНОГОЛЕТНЕМЁРЗЛЫЕ ГОРНЫЕ ПОРОДЫ, породы, длительное время (не менее двух лет подряд) содержащие лёд и составляющие оси. массу мёрзлой зоны литосферы. Форма, размеры и взаимное расположение ледяных включений (криогенная текстура М. г. п.) определяются условиями осадконакоп-ления и промерзания. М. г. п. могут включать также жидкую и газообразную фазы Н2О, объём и распределение к-рых зависят от дисперсности минерального или органо-минерального скелета пород и условий промерзания или протаивания. Присутствие льда в М. г. п. существенно влияет на их физич., механич. и фильт-рационные свойства. Рыхлые и трещиноватые скальные горные породы благодаря промерзанию приобретают новые свойства (сцепление, прочность, непроницаемость и др.), к-рые имеют важное значение при использовании их в качестве стройматериалов, а также оснований и среды для инж. сооружений. М. г. п. создают специфич. условия, требующие особых решений при пром. и с.-х. освоении территории, строительстве, водоснабжении и др. мероприятиях. Науч. основы проектирования и строительства различных сооружений на М. г. п., их водной и тепловой мелиорации и решения др. прикладных задач рассматриваются в инж. геокриологии, разработанной гл. обр. в СССР (Н. А. Цытович, М.М. Крылов, В. Г. Гольдтман, Г. В. Порхаев, С. С. Вялов, К. Ф. Войтковский и др.). Значит, вклад в развитие инж. геокриологии внесли также зарубежные исследователи (швед. - Г. Бесков, амер.-С. Тейбер и К. Терцаги и др.).

Лит.: Основы геокриологии (мерзлотоведения), ч. 1-2, М., 1959; Д о с т о в а-л о в Б. Н., Кудрявцев В. А., Общее мерзлотоведение, М., 1967; II Международная конференция по мерзлотоведению. Доклады и сообщения, в. 1 - 7, Якутск, 1973. Г. И. Дубиков, А. А. Шарбатян.

МНОГОЛЕТНИЕ КОРМОВЫЕ ТРАВЫ посевные, травянистые растения с длительностью жизни более одного года, возделываемые на корм скоту. Годовой цикл жизни М. к. т. слагается из фаз: весеннее отрастание, кущение, колошение - бутонизация, цветение, плодоношение с повторным кущением, осенняя вегетация, зимний покой. Возделывают в основном растения сем. злаков (тимофеевка, лисохвост, житняк и др.) и бобовых (клевер, люцерна, эспарцет и др.). Чаще злаковые и бобовые травы высевают в смеси, что оказывает положительное влияние на качество корма и плодородие почвы. В связи с повторным кущением М. к. т. весьма целесообразно во 2-ю половину вегетации подкормить удобрениями. См. Кормовые травы.

МНОГОЛЕТНИКИ, многолетние растения, травянистые растения и полукустарники, зимующие более двух лет. Одни из них живут неск. лет, другие - до 20-30 и даже до 100 лет (напр., тау-сагыз). Достигнув определённого возраста, М. могут цвести и плодоносить каждый год (поликарпич. растения), в отличие от одно- и двулетников (монокарпич. растения), цветущих и плодоносящих один раз в жизни. У нек-рых из М. листья сохраняются круглый год (вечнозелёные растения). У большинства же в неблагоприятные периоды (зимой, в период засухи) листья и др. надземные органы отмирают, живыми у них остаются лишь подземные органы (корневища, клубни, луковицы, корни). У нек-рых же сохраняются частично и надземные побеги с почками возобновления (розетки, ползучие побеги, нижние части прямостоячих стеблей). Иногда деление растений на однолетники, двулетники и М. условно. Так, многолетнее растение тропиков клещевина (Ricinus commu-nis) в условиях умеренного климата развивается как однолетник, а однолетнее растение равнин мятлик однолетний в горах развивается как многолетнее растение. Иногда М. наз. также деревья и кустарники.

Лит.: Серебряков И. Г., Морфология вегетативных органов высших растений, М., 1952; Ботаника, 7 изд., т. 1, М., 1966.

Л. В. Кудряшов.

МНОГОЛЕТНЯЯ КРИОЛИТОЗОНА, верхний слой земной коры, характеризующийся устойчивой в течение многих лет отрицательной или нулевой температурой, обеспечивающей круглогодичное и длительное (не менее двух лет подряд) сохранение подземного льда. Верх, часть М. к. слагают многолетне-мёрзлые горные породы и подземные ледяные тела, образующие мёрзлую зону литосферы, нижнюю - морозные горные породы и непромерзающие горизонты сильноминерализованных подземных вод. Формирование ледяных включений здесь может быть связано только с появлением пресных вод или слабоминерализованных растворов в естеств. или искусств, полостях. Эта часть М. к. преобладает в зонах затруднённого водообмена и выклинивается в зонах активного водообмена. Верх, граница М. к. в субгляциальных условиях проходит по поверхности раздела лёд - горные породы, а в субаэ-ральных и субаквальных - по подошве сезонноталого или прогретого выше О °С слоя пород. На этой границе, непостоянной во времени и в пространстве, темп-ра ни разу в течение года не поднимается выше О °С. Отрицат. значения ср. годовой темп-ры земной поверхности (практически совпадающие со ср. годовой темп-рой пород у подошвы сезонноталого слоя) - необходимое условие возникновения М. к. При положит, ср. годовых темп-pax поверхности суши или шельфа М. к. может существовать только в деградирующем состоянии как реликт прошлых более суровых климатич. условий. Нижняя граница М. к. проходит по геоизотерме О °С, к-рая при изменении условий тепло- и влагообмена верх, слоя горных пород с поверхностью почвы, атмосферой и водоёмами постепенно изменяет своё положение, что обнаруживается только за достаточно большие промежутки времени. Глубина залегания нулевой изотермы от поверхности Земли колеблется от неск. м в умеренных широтах (на границах области распространения многолетнемёрзлых или охлаждённых горных пород) до неск. км в высоких широтах (св. 4 км в Антарктиде и 1, 5 км в Субарктике).

КАРТА КРИОГЕННЫХ ОБРАЗОВАНИЙ (по И.Я.Баранову и П.А.Шумскому)

В Юж. полушарии М. к. распространена под ледниковым покровом Антарктиды и в её шельфовой зоне с отрицат. ср. годовой темп-рой морского дна, а также под ледниками и сезонноталыми почвами горных сооружений Юж. Америки, Африки и Австралии. В Сев. полушарии М. к. охватывает обширный субполярный пояс материков, расширяющийся с 3. на В. по мере усиления континен-тальности климата; горные сооружения островов и континентов, возвышающиеся над снеговой линией; значит, часть шельфа арктич. морей, а также горные породы под ледниковыми покровами и сезонноталыми почвами Гренландии, Исландии и островов Сев. Ледовитого океана. М.к. существует и под термокарстовыми озёрами, изобилующими на равнинах Арктики и Субарктики. Сплошность М. к. в высоких широтах нарушают сквозные и несквозные талики различного генезиса, в к-рых темп-pa пород хотя бы часть года положительна. В широкой полосе равнин вблизи совр. границы М. к. встречаются только отд. острова многолетнемёрзлых горных пород. В Зап.-Сибирской равнине южнее этой границы (при отсутствии многолетнемёрзлых горных пород в подпочвенном слое) на значит, глубине от поверхности (до 100 м и более) протягивается широкий (св. 400 км) и прерывистый клинообразный слой реликтовой М. к., к-рый раньше (по-видимому, до голоценового климатич. оптимума) сливался с активным слоем, а в совр. эпоху интенсивно протаивает сверху и снизу. Площадь распространения М. к. с учётом реликтовых мёрзлых слоев составляет более 25% терр. суши, включая 11% под ледниковыми покровами. На прилагаемой карте криогенных образований площади, занимаемые М. к., показаны тёмными видами штриховки.

Возникновение М. к. требует устойчивого положения суши в высоких широтах и на достаточной высоте над уровнем моря, а также определённого типа циркуляции атмосферы и океанич. вод. Формирование М. к. предшествует развитию поверхностного оледенения и охватывает большие по сравнению с последним площади. Особенно яркого выражения М.к. достигала при глобальных похолоданиях климата. Периоды агградации и деградации М. к. неоднократно повторялись на протяжении геол. истории Земли.

Терминам, к. предложен П. Ф. Швецовым в 1955. Организация систематич. исследований явлений М. к. начата в СССР в 1927 и связана с именем М. И. Сумгина. Значит, вклад в дальнейшее развитие учения о М. к. внесли советские учёные (Н. И. Толстихин, В. А. Кудрявцев, П. А. Шумский, И. Я. Баранов, Б. Н. Достовалов, А. И. Попов), а также амер. (С. Мюллер, Т. Л. Певе, А. Л. Уошберн, А. Лахен-брух), франц. и англ. (А. Кайо, Дж. Тейлор), швед. (Г. Бесков), канад. (Дж. Р. Маккей) и др. учёные.

Лит.: Сумгин М.И., Вечная мерзлота почвы в пределах СССР, 2 изд., М.-Л., 1937; Толстихин Н. И., Подземные воды мерзлой зоны литосферы, М.-Л., 1941; Шумский П. А., К р е н к е А. Н., Современное оледенение Земли и его изменения, " Геофизический бюллетень", 1964, N° 14; Баранов И. Я., Вечная мерзлота и ее возникновение в ходе эволюции Земли как планеты, " Астрономический журнал", 1966, т. 43, в. 4; Достовалов Б. Н., Кудрявцев В. А., Общее мерзлотоведение, М., 1967; Попов А. И., Мерзлотные явления в земной коре (Криолитология), М., 1967; II Международная конференция по мерзлотоведению.Доклады и сообщения, в. 1-7,

Якутск, 1973; М u 1 1 е г S. W., Permafrost or permanently frozen ground and related engineering problems, Ann Arbor, 1947; Т е r-z a g h i K., Permafrost, " Journal of the Boston Society of Civil Engineers", 1952, v. 39, № 1; С a i 1 1 e u x А., Т а у 1 о г G., Cryopedologie. Etude des sols geles, P., 1954; Proceedings, International Permafrost Conference, W., 1965. А. А. Шарбатян.

МНОГОЛЕТНЯЯ МЕРЗЛОТА, то же, что вечная мерзлота. См. также Многолетняя криолитозона.

МНОГОМЕРНОЕ ПРОСТРАНСТВО, пространство, имеющее число измерений (размерность) более трёх. Обычное евклидово пространство, изучаемое в элементарной геометрии, трёхмерно; плоскости - двумерны, прямые - одномерны. Возникновение понятия М. п. связано с процессом обобщения самого предмета геометрии. В основе этого процесса лежит открытие отношений и форм, сходных с пространственными, для мно-гочисл. классов математич. объектов (зачастую не имеющих геом. характера). В ходе этого процесса постепенно выкристаллизовалась идея абстрактного математического пространства как системы элементов любой природы, между к-ры-ми установлены отношения, сходные с теми или иными важными отношениями между точками обычного пространства. Наиболее общее выражение эта идея нашла в таких понятиях, как топологическое пространство и, в частности, метрическое пространство.

Простейшими М. п. являются и-мер-ные евклидовы пространства, где п может быть любым натуральным числом. Подобно тому, как положение точки обычного евклидова пространства определяется заданием трёх её прямоугольных координат, " точка" n-мерного евклидова пространства задаётся п " кооодина-
[ris]


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.013 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал