Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Тактильная чувствительность 73 страница






Лит.: К а р е е в H. И., Роль Парижских секций в перевороте 9 Термидора, П., 1914; Д о б р о л ю б с к и и К. П., Термидор, Од., 1949. А. 3. Манфред.

ТЕРМИДОРИАНЦЫ, участники контрреволюц. Термидорианского переворота 1794, после к-рого входили в т. н. термидорианский Конвент, а затем играли значит, роль при Директории. Блок Т. делился на игравших гл. роль правых Т. (их возглавляли Ж. Л. Тальен, П. Баррас, Ж. Фуше) - переродившихся якобинцев, представлявших новую, разбогатевшую на спекуляциях буржуазию, и т. н. левых Т. (во гл. с Ж. Ко лл о д'Эрбуа, Ж. БийоВаренном, М. Вадье) - в прошлом в своём большинстве принадлежавших к левым течениям якобинцев. После казни М. Робеспьера и его сподвижников правые Т. стремились оттеснить левых от власти, после Жерминальского восстания 1795 (несмотря на полную непричастность к нему левых Т.) арестовали их гл. руководителей и разгромили всю группировку.

ТЕРМИН, в др.-рим. мифологии божество границ.

ТЕРМИН (позднелат. terminus - термин, от лат. terminus - предел, граница), 1) слово или словосочетание, призванное точно обозначить понятие и его соотношение с др. понятиями в пределах спец. сферы. Т. служат специализирующими, ограничит, обозначениями характерных для этой сферы предметов, явлений, их свойств и отношений. Они существуют лишь в рамках определённой терминологии. В отличие от слов общего языка, Т. не связаны с контекстом. В пределах данной системы понятий Т. в идеале должен быть однозначным, систематичным, стилистически нейтральным (напр., " фонема", " синус", " прибавочная стоимость" ). Т. и нетермины (слова общенародного языка ) могут переходить друг в друга. Т. подчиняются словообразоват., грамматич. и фонетич. правилам данного языка, создаются путём терминологизации слов общенародного языка, заимствования или калькирования (см. Калька в языкознании ) иноязычных терминоэлементов. В совр. науке существует стремление к семантич. унификации систем Т. одной и той же науки в разных языках (однозначное соответствие между Т. разных языков ) и к использованию интернационалиэмов в терминологии. 2 ) В логике, то же, что тер м-элемент формализованного языка, соответствующий подлежащему или дополнению в обычном грамматич. смысле, и субъект суждения в традиционной логике. Наиболее распространённое понимание: элемент посылки суждений (высказываний), входящих в т. н. категорический силлогизм. Различают большой Т., служащий предикатом (" логич. сказуемым" ) суждения, являющегося заключ е н и е м данного силлогизма, меньший Т.- субъект (" логич. подлежащее" ) заключения и средний Т., вообще не входящий в заключение силлогизма (но входящий в его суждения-посылки ). См. также Силлогистика.

Лит. см. при статьях Терминология, Силлогизм.

ТЕРМИНАЛ (от лат. termmalis - относящийся к концу ) в вычислительной технике, терминальное устройство, абонентский пульт, устройство в составе вычислит, системы, предназначенное для ввода информации в систему и вывода информации из неё, напр. при взаимодействии человека с ЭВМ (см. Сеть вычислительных центров). Как правило, большинство пользователей (абонентов ) удалено от вычислит, центров коллективного пользования, поэтому их доступ к ЭВМ осуществляется посредством Т., связанных с вычислительным центром каналами передачи данных. Примеры терминальных устройств - телетайпы, телефонные аппараты, оснащённые клавиатурой (для набора адреса и команд ), отображения информации устройства на электроннолучевых трубках (дисплеи ), устройства для автоматического считывания текстов. Т. применяют в автоматизированных системах управления и проектирования, в информационно-поисковых системах, в системах программированного обучения и т. д. Различают Т., предназначенные только для непосредств. ввода и вывода данных (иногда они содержат запоминающее устройство для временного хранения данных ), и Т., включающие малую ЭВМ для предварит, обработки информации, решения характерных частных задач пользователей, управления процессами передачи информации. Намечается тенденция использования Т. в больницах, библиотеках, торговых предприятиях, гостиницах, кассах предварит, продажи билетов и т. п.

Лит.: У и л к с М., Системы с разделением времени, пер. с англ., М., 1972; Ч а чко А. Г., Человек за пультом, М., 1974. А. Г. Чачко.

ТЕРМИНАЛЬНОЕ СОСТОЯНИЕ (от лат. terminalis - относящийся к концу ), конечные стадии жизни - переходные состояния между жизнью и биол. смертью. Характеризуются глубокими, хотя и обратимыми нарушениями функций важнейших органов и систем организма, нарастающей гипоксией. Т. с. включает стадии предагонии, с угасанием сознания, рефлексов при сохранении дыхания и сердечной деятельности; агонии; клинической смерти, при к-рой отсутствуют внеш. признаки жизни. Продолжительность Т. с. зависит от тяжести осн. заболевания и от того, применяются ли меры по оживлению организма (см. Реанимация), включающие массаж сердца, искусств, или вспомогат. дыхание и др. Одновременно с ними проводят лечение основного заболевания (например, противошоковую терапию при травме ).

Лит.: Основы реаниматологии, под ред. В. А. Неговского, 2 изд., М., 1975.

ТЕРМИНАТОР (от лат. termino - разграничиваю, разделяю ), линия на диске планеты или спутника, отделяющая освещённое (дневное ) полушарие от тёмного (ночного ). Для точек поверхности планеты или спутника, находящихся на линии Т., Солнце либо восходит (утренний Т. ), либо заходит (вечерний Т. ). На видимый с Земли диск светила (напр., Луны ) Т. проектируется в виде половины эллипса. Его перемещение по диску определяет явление смены фаз (см., напр., Фазы Лины). При наличии у планеты атмосферы Т. несколько смещается в сторону ночного полушария вследствие влияния рефракции и сумерек.

ТЕРМИНОЛОГИЯ (от термин и... л о ги я ), область лексики, совокупность терминов определённой отрасли науки, техники, производства, области иск-ва, обществ, деятельности, связанная с соответствующей системой понятий. Формирование Т. обусловлено обществ, и научно-технич. развитием, т. к. всякое новое понятие в спец. сфере должно обозначаться термином. Терминология, система обязана соответствовать уровню совр. развития данной отрасли науки и техники, области человеческой деятельности; она исторически изменчива, имеет разные источники при формировании. Напр., с развитием философии и науки на Бл. Востоке в основу Т. стран мусульм. Востока легла араб. Т. В Европе с эпохи Ренессанса возобладала тенденция к формированию Т. на базе греч. и лат. языков. В позднейшее время увеличилось количество терминов, созданных на нац. основе с привлечением терминов из др. языков. В рус. Т. также широко используются иноязычные терминоэлементы, к-рые соединяются с исконными элементами (ср. " суперобложка", " очеркист" и т. д. ). Т. является объектом упорядочения и стандартизации, а также лексикографич. работы. Важное значение имеет создание нац. словарей Т. и отраслевых терминологич. словарей. Т. связана с вопросами обычного и машинного перевода, разработкой информационно-поисковых систем, документалистики и т. п. Проблемами Т. занимаются в СССР - Ком-итет научно-технич. Т. АН СССР и Госстандарт СССР; ряд междунар. орг-ций: СЭВ, ЮНЕСКО (INFOTERM ) и др.

Лит.: Л о т т е Д. С., Основы построения научно-технической и др. терминологии. Вопросы теории и методики, М., 1961; Реформатский А. А., Что такое термин и терминология, М., 1959; Как работать над [научно-технической] терминологией, М., 1968; Современные проблемы терминологии в науке и технике, М., 1969; Канделаки Т. Л., Значения терминов и системы значений научно-технических терминологий, в кн.: Проблемы языка науки и техники, М., 1970; Лингвистические проблемы научно-технической терминологии, М., 1970. Т. Л. Канделаки, В. П. Нерознак.

ТЕРМИСТОР (англ, thermistor ), то же что терморезистор. Исторически термин " Т." происходит от англ, слов thermally sensitive resistor - термочувствительный резистор.

ТЕРМИТ (от греч. therme - тепло, жар ), термитная смесь, смесь порошков металлич. алюминия или (реже ) магния и окислов нек-рых металлов (железа, никеля и др. ), при воспламенении к-рой с помощью запальной смеси интенсивно идут экзотермич. реакции окисления алюминия или магния кислородом окисла и одновременно восстанавливается металл окисла; в результате выделения большого количества теплоты продукты реакции нагреваются выше 2000 °С. Количеств, соотношение компонентов смеси определяется стехиометрич. соотношением. Наиболее распространён железоалюминиевый Т. (содержащий прокалённую окалину или богатую жел. руду), используемый для сварки рельсов и при отливке крупных деталей. Темп-pa воспламенения такого Т. ок. 1300 °С (запальной смеси 800 °С); образующиеся железо и шлак нагреваются до 2400 °С. Иногда в состав жел. Т. вводят жел. обсечку, легирующие присадки и флюсы. Процесс проводят в магнезитовом тигле. Имеются Т. для сварки телефонных и телеграфных проводов. В военной технике Т. используются в качестве зажигательных составов. В производстве ферросплавов Т. с добавлением флюсов называется шихтой. См. также Алюминотермия, Металлотермия, Термитная сварка. В. А. Боголюбов.

ТЕРМИТНАЯ СВАРКА, способ сварки, при к-ром для нагрева металла используется термит, состоящий из порошкообразной смеси металлич. алюминия или магния и железной окалины. При использовании термита на основе алюминия соединяемые детали заформовывают огнеупорным материалом, подогревают, место сварки заливают расплавленным термитом, к-рый предварительно зажигают (электродугой или запалом). Жидкое железо, сплавляясь с осн. металлом, даёт прочное соединение. Сварка термитом на основе алюминия применяется для соединения стальных и чугунных деталей -стыковки рельсов, труб, заварки трещин, наплавки поверхностей при ремонте. Термит на основе магния используется в основном для соединения телефонных, телеграфных проводов и жил кабелей. Из термитной смеси изготовляют цилиндрич. шашки с осевым каналом для провода и выемкой с торца для запала. Подлежащие сварке концы проводов заводят в шашку, после чего шашку зажигают и провода осаживают. Термит на основе магния может быть использован также для сварки труб небольших диаметров.

Лит.: Справочник по сварке, под ред. Е.В.Соколова, т. 2, М., 1961; Хренов К. К., Сварка, резка и пайка металлов, 4 изд., М., 1973. К. К. Хренов.

ТЕРМИТЫ (Isoptera ), отряд насекомых, близкий к таракановым и богомолам; характеризуются неполным превращением и обществ, образом жизни с выраженным многообразием особей в пределах вида (половой и " кастовый" полиморфизм). Т. живут общинами от неск. сотен до неск. млн. особей в гнёздах-термитниках. Община состоит из самки и самца -" царской пары" или заменяющих их неотеничных половых особей (см. Неотения), крупных и мелких " солдат" и " рабочих" (рис. 1 ), т. е. самцов и самок с редуци рованными половыми железами. У низших Т. настоящие рабочие заменены личинками - псевдоэргатами. У нек-рых Т. нет " солдат". Длина рабочих особей 2-15 мм, солдат - до 20 мм. Яйцекладущие самки с гипертрофированными яичниками достигают дл. 140 мм. Взрослые половые особи с 2 парами удлинённых нежных, перепончатых крыльев, к-рые сбрасывают после лёта; имеют сложные (фасеточные ) глаза. У др. глаза недоразвиты Или отсутствуют. В кишечнике Т. развиваются симбиотич. простейшие (жгутиковые из отряда Hypermastigina ), благодаря деятельности к-рых Т. усваивает древесную клетчатку - осн. источник Питания большинства из них. Нек-рые Т. питаются только грибами, в основном плесневыми, к-рые разводят в " грибных садах" (рис. 2 ).

Рис. 1. Касты термита Bellicositermes bellicosus: 1 - матка (" царица"); 2 ~ самец (" царь"); 3 -крупный " солдат"; 4 - мелкий " солдат"; 5 -крупный " рабочий"; 6 - мелкий " рабочий".

Рис. 2. " Грибные сады" термитов рода Pseudocanthoter-imes.

Община основывается " царской парой". После выкармливания первых рабочих особей самка лишь откладывает яйца. Самец периодически оплодотворяет её. Продолжительность жизни " царской пары" - до неск. десятилетий, община же может существовать мн. десятилетия. Рабочие особи обеспечивают общину пищей, строят гнездо и галереи. Т., входящие в одну общину, постоянно обмениваются пищей (трофаллаксис). Возникновение каст у Т. связано с их делением как на половые и бесполые особи, так и на " рабочих" и " солдат". Обычно ведут скрытный образ жизни. Термитники разнообразны по форме и размерам, достигают у нек-рых тропич. видов вые. 15 м. У ряда видов гнёзда подземные; др. Т. выгрызают их в древесине. Т. активно регулируют микроклимат гнезда. В термитниках поселяются мн. беспозвоночные (термитофилы) - специфич. спутники Т., их симбионты: жуки, мокрицы, многоножки, клещи и др. Ок. 2600 видов Т. объединяют в 6 сем.; обитают гл. обр. в тропиках, частично в субтропиках; в СССР - 7 видов из 4 сем.: на Ю.-З. УССР, на Черноморском побережье Кавказа, в Ср. Азии и на Д. Востоке. Т. разрушают древесину и др. материалы, в Африке и Индии повреждают сельскохозяйственные культуры. С вредными Т. ведётся борьба.

Лит.: ЛупповаА. H., Термиты Туркменистана, " Тр. Ин-та зоологии и паразитологии (АН Турки. ССР)", 1958, в. 2; Жизнь животных, т. 3, М., 1969, с. 204 - 210; Grasse P. P., Ordre des isopteres au termites, в кн.: Traite de zoologie. t. 9, P., 1949; Goetsch W., Vergleichende Biologie der Insecten - Staaten, Lpz., 1953; Harris W., Termites, their recoghition. and control, L., 1961. А. А. Захаров.

ТЕРМИЧЕСКАЯ БАШЕННАЯ ПЕЧЬ, вертикальная протяжная печь для непрерывной термич. обработки металлич. полосы. Полоса протягивается с помощью роликов с электрич. приводом (через один или неск. вертикальных проходов ). При движении через Т. б. п. полоса проходит через камеры нагрева, выдержки и охлаждения с различными скоростями, благодаря чему может быть проведена термич. обработка по сложному режиму. Камеры Т. б. п. заполнены газом контролируемого состава в зависимости от режима термич. или химико-термич. обработки. Т. б. п. устанавливают в составе поточной линии, к-рая, кроме средней (печной ) части - собственно Т. б. п., имеет головную и хвостовую части. Головная часть включает разматыватели рулонов, ножницы для обрезки концов, сварочные машины для сварки конца предыдущего рулона с началом последующего, устройства для очистки металла, петлевые устройства - аккумуляторы полосы для обеспечения непрерывности её подачи в печь при сварке концов. Хвостовая часть включает выходное петлевое устройство, устройство для натяжения полосы, сматыватели или участки порезки её на листы,

Лит.: Справочник конструктора печей прокатного производства, под ред. В. М. Тымчака, т. 2, М., 1970, гл. 32; А п т е рм а н В. H., Ты мча к В. М., Протяжные печи, М., 1969, гл. 1. В. М. Тымчак.

ТЕРМИЧЕСКАЯ ДИССОЦИАЦИЯ, химическая реакция обратимого разложения вещества, вызываемая повышением темп-ры. При Т. д. из одного вещества образуется несколько (2H2O-< --> 2H2 + О2, СаСОз-> СаО + СО2 ) или одно более простое (N2O4 < --> 2NO2, Cl2.< --> 2Cl ). Равновесие Т. д. устанавливается по действующих масс закону. Оно может быть охарактеризовано или константой равновесия, или степенью диссоциации (отношением числа распавшихся молекул к общему числу молекул ). В большинстве случаев Т. д. сопровождается поглощением теплоты (приращение энтальпии ДН> 0 ); поэтому в соответствии с Ле Шателье -Брауна принципом нагревание усиливает её, степень смещения Т. д. с температурой определяется абсолютным значением ДН. Давление препятствует Т. д. тем сильнее, чем большим изменением (возрастанием ) числа молей (Ди ) газообразных веществ сопровождается процесс; при Дn = 0 (напр., в реакции 2Н1< -±Н2 + 12 ) степень диссоциации от давления не зависит. Если твёрдые вещества не образуют твёрдых растворов и не находятся в высокодисперсном состоянии, то давление Т. д. однозначно определяется темп-рой. Для осуществления Т. д. твёрдых веществ (окислов, кристаллогидратов и пр. ) важно знать темп-ру, при к-рой давление диссоциации становится равным внешнему (в частности, атмосферному ) давлению. Так как выделяющийся газ может преодолеть давление окружающей среды, то по достижении этой темп-ры процесс разложения сразу усиливается.

Из различных процессов Т. д. наибольшее практич. значение имеют разложение Н2О, СО2, дегидрирование нек-рых углеводородов (гомогенные реакции ), диссоциация карбонатов, сульфидов (гетерогенные реакции ). Их протекание связано со мн. теплотехнич., хим. и металлургич. процессами, в частности с обжигом известняка, произ-вом цементов и доменным процессом.

Лит.: КиреевВ.А., Курс физической химии, 3 изд., М., 1975; Карапет ьянц М. X., Химическая термодинамика, 3 изд., М., 1975. М. X. Карапетьянц.

ТЕРМИЧЕСКАЯ ИОНИЗАЦИЯ, см. Ионизация.

ТЕРМИЧЕСКАЯ НЕФТЕДОБЫЧА, методы разработки нефт. месторождений воздействием на нефт. пласты теплом. Исходные положения для развития Т. н. высказаны Д. И. Менделеевым (1888 ), Д. В. Голубятниковым (1916 ), И. М. Губкиным (1928 ), А. Б. Шейнманом и К. К. Дубровой (1934 ). Внедрение Т. н. в СССР начато в 30-х гг. Для нагрева пласта при Т. н. применяют электроэнергию, подземное горение, пар, нагретую воду. Практич. значение имеют методы Т. н.: внутрипластовое горение (ВГ ), влажное внутрипластовое горение (ВВГ ), закачка теплоносителей (ЗТ), электротепловая обработка скважин (ЭТС ), термохимич. обработка скважин (ТХС ), паровая обработка скважин (ПС). ВГ осуществляется частичным (ок. 10%) сжиганием остаточной нефти в пласте. Очаг горения, инициируемый различными глубинными нагревательными устройствами (электрич., огневыми, химич. и т. п.), продвигается по пласту за счёт подачи в пласт воздуха. В пласте достигается повышение темп-ры (порядка 400-500 °С). Нефть из пласта извлекается путём вытеснения её газообразными веществами (азот, углекислый газ, пары воды), выпаривания из неё лёгких фракций и переноса их в направлении вытеснения. ВВГ производится путём ввода в пласт воды вместе с окислителем. При этом ускоряется процесс теплопереноса и извлечения нефти. В процессах ЗТ подготовка теплоносителей (пара, подогретой воды) производится на поверхности с применением парогенераторов (котлов ) и подогревателей воды. ЗТ обычно применяется на месторождениях с глубиной залегания не более 600-800 м из-за увеличения потерь тепла с увеличением глубины залегания пластов. После того как часть пласта подвергнута воздействию ВГ, ВВГ или ЗТ для экономии затрат, переходят на закачку обычной воды. Прогретая зона (" оторочка" ) при этом перемещается по пласту.

В процессах ЭТС, ТХС и ПС в призабойной зоне создаётся и поддерживается температура, благоприятная для притока нефти и эксплуатации скважин (улучшение эффективной проницаемости, растворение парафино-асфальтено-смолистых отложений в нефти ). Скважины (при 80-150 °С ) обрабатывают периодически или непрерывно глубинными, или наземными генераторами тепла.

Т. н. повышает коэфф. нефтеотдачи на 10-25%, улучшает фильтрацию нефти из пласта, позволяет разрабатывать залежи вязких, смолистых, парафинистых битуминозных нефтей и регулировать тепловой режим пластов, устранять их охлаждение; сокращает период разработки месторождений.

Лит.: Шейнман А. Б., Малофеев Г. Б..Сергеев А. И., Воздействие на пласт теплом при добыче нефти, М., 1969; Термоинтенсификация добычи нефти, М., 1971; Тепловые методы добычи нефти, М., 1975. Ю. П. Желтое, А. Б. Шейнман.

ТЕРМИЧЕСКАЯ ОБРАБОТКА металлов, процесс обработки изделий из металлов и сплавов путём теплового воздействия с целью изменения их структуры и свойств в заданном направлении. Это воздействие может сочетаться также с химическим, деформационным, магнитным и др.

Историческая справка. Человек использует Т. о. металлов с древнейших времён. Ещё в эпоху энеолита, применяя холодную ковку самородных золота и меди, первобытный человек столкнулся с явлением наклёпа, к-рое затрудняло изготовление изделий с тонкими лезвиями и острыми наконечниками, и для восстановления пластичности кузнец должен был нагревать холоднокованую медь в очаге. Наиболее ранние свидетельства о применении смягчающего отжига наклёпанного металла относятся к кон. 5-го тыс. до н. э. Такой отжиг по времени появления был первой операцией Т. о. металлов. При изготовлении оружия и орудий труда из железа, полученного с использованием сыродутного процесса, кузнец нагревал железную заготовку для горячей ковки в древесноугольном горне. При этом железо науглероживалось, т. е. происходила цементация - одна из разновидностей химико-термической обработки. Охлаждая кованое изделие из науглероженного железа в воде, кузнец обнаружил резкое повышение его твёрдости и улучшение др. свойств. Закалка в воде науглероженного железа применялась с кон. 2 - нач. 1-го тыс. до н. э. В " Одиссее" Гомера (8-7 вв. до н. э. ) есть такие строки: " Как погружает кузнец раскалённый топор иль секиру в воду холодную, и зашипит с клокотаньем железо -крепче железо бывает, в огне и воде закаляясь". В 5 в. до н. э. этруски закаливали в воде зеркала из высокооловянной бронзы (скорее всего для улучшения блеска при полировке ). Цементацию железа в древесном угле или органич. веществе, закалку и отпуск стали широко применяли в ср. века в произ-ве ножей, мечей, напильников и др. инструментов. Не зная сущности внутр. превращений в металле, ср.-век. мастера часто приписывали получение высоких свойств при Т. о. металлов проявлению сверхъестеств. сил. До сер. 19 в. знания человека о Т. о. металлов представляли собой совокупность рецептов, выработанных на основе многовекового опыта. Потребности развития техники, и в первую очередь развития сталепушечного произ-ва, обусловили превращение Т. о. металлов из искусства в науку. В сер. 19 в., когда армия стремилась заменить бронзовые и чугунные пушки более мощными стальными, чрезвычайно острой была проблема изготовления орудийных стволов высокой и гарантированной прочности. Несмотря на то что металлурги знали рецепты выплавки и литья стали, орудийные стволы очень часто разрывались без видимых причин. Д. К. Чернов на Обуховском сталелитейном з-де в Петербурге, изучая под микроскопом протравленные шлифы, приготовленные из дул орудий, и наблюдая под лупой строение изломов в месте разрыва, сделал вывод, что сталь тем прочнее, чем мельче её структура. В 1868 Чернов открыл внутр. структурные превращения в охлаждающейся стали, происходящие при определённых темп-pax, к-рые он назвал критическими точками а и Ь. Если сталь нагревать до темп-р ниже точки а, то её невозможно закалить, а для получения мелкозернистой структуры сталь следует нагревать до темп-р выше точки Ь. Открытие Черновым критич. точек структурных превращений в стали позволило научно обоснованно выбирать режим Т. о. для получения необходимых свойств стальных изделий.

В 1906 А. Вильм (Германия ) на изобретённом им дуралюмине открыл старение после закалки (см. Старение металлов) - важнейший способ упрочения сплавов на разной основе (алюминиевых, медных, никелевых, железных и др. ). В 30-е гг. 20 в. появилась термомеханическая обработка стареющих медных сплавов, а в 50-е - термомеханич. обработка сталей, позволившая значительно повысить прочность изделий. К комбинированным видам Т. о. относится термомагнитная обработка, позволяющая в результате охлаждения изделий в магнитном поле улучшать их нек-рые магнитные свойства (см. Магнитно-мягкие материалы, Магнитно-твёрдые материалы).

Итогом многочисл. исследований изменений структуры и свойств металлов и сплавов при тепловом воздействии явилась стройная теория Т. о. металлов.

Классификация видов Т. о. основывается на том, какого типа структурные изменения в металле происходят при тепловом воздействии. Т. о. металлов подразделяется на собственно термическую, заключающуюся только в тепловом воздействии на металл, химико-термическую, сочетающую тепловое и хим. воздействия, и термомеханическую, сочетающую тепловое воздействие и пластич. деформацию. Собственно термич. обработка включает след, виды: отжиг 1-го рода, отжиг 2-го рода, закалку без полиморфного превращения и с полиморфным превращением, старение и отпуск.

Отжиг1-го рода (гомогенизационный, рекристаллизационный и для уменьшения остаточных напряжений ) частично или полностью устраняет отклонения от равновесного состояния структуры, возникшие при литье, обработке давлением, сварке и др. технологич. процессах. Процессы, устраняющие отклонения от равновесного состояния, идут самопроизвольно, и нагрев при отжиге 1-го рода проводят лишь для их ускорения. Осн. параметры такого отжига - темп-pa нагрева и время выдержки. В зависимости от того, какие отклонения от равновесного состояния устраняются, различают разновидности отжига 1-го рода. Гомогенизационный отжиг (см. Гомогенизация) предназначен для устранения последствий дендритной ликвации, в результате к-рой после кристаллизации внутри кристаллитов твёрдого раствора хим. состав оказывается неоднородным и, кроме того, может появляться неравновесная фаза, напр. хим. соединение, охрупчивающее сплав. При гоМогенизац. отжиге диффузия приводит к растворению неравновесных избыточных фаз, в результате чего сплав становится более гомогенным (однородным ). После такого отжига повышаются пластичность и стойкость против коррозии. Рекристаллизационный отжиг устраняет отклонения в структуре от равновесного состояния, возникающие при пластич. деформации. При обработке давлением, особенно холодной, металл наклёпывается - его прочность возрастает, а пластичность снижается из-за повышения плотности дислокаций в кристаллитах. При нагреве наклёпанного металла выше нек-рой темп-ры развивается первичная и затем собирательная рекристаллизация, при к-рой плотность дислокаций резко снижается. В результате металл разупрочняется и становится пластичнее. Такой отжиг используют для улучшения обрабатываемости давлением и придания металлу необходимого сочетания твёрдости, прочности и пластичности. Как правило, при рекристаллизац. отжиге стремятся получить бестекстурный материал, в к-ром отсутствует анизотропия свойств. В произ-ве листов из трансформаторной стали рекристаллизац. отжиг применяют для получения желательной текстуры металла, возникающей при рекристаллизации. Отжиг, уменьшающий напряжения, применяют к изделиям, в к-рых при обработке давлением, литье, сварке, термообработке и др. технологич. процессах возникли недопустимо большие остаточные напряжения, взаимно уравновешивающиеся внутри тела без участия внеш. нагрузок. Остаточные напряжения могут вызвать искажение формы и размеров изделия во время его обработки, эксплуатации или хранения на складе. При нагревании изделия предел текучести снижается и, когда он становится меньше остаточных напряжений, происходит быстрая их разрядка путём пластич. течения в разных слоях металла.

Отжиг 2-го рода применим только к тем металлам и сплавам, в к-рых при изменении темп-ры протекают фазовые превращения. При отжиге 2-го рода происходят качественные или только количеств, изменения фазового состава (типа и объёмного содержания фаз ) при нагреве и обратные изменения при охлаждении. Осн. параметры такого отжига - темп-ра нагрева, время выдержки при этой темп-ре и скорость охлаждения. Темп-ру и время отжига выбирают так, чтобы обеспечить необходимые фазовые изменения, напр, полиморфное превращение (см. Полиморфизм) или растворение избыточной фазы. При этом обычно следят за тем, чтобы не выросло крупное зерно фазы, стабильной при темп-ре отжига. Скорость охлаждения должна быть достаточно мала, чтобы при понижении темп-ры успели пройти обратные фазовые превращения, в основе к-рых лежит диффузия. При отжиге 2-го рода изделия охлаждают вместе с печью или на воздухе. В последнем случае процесс наз. нормализацией. Отжиг 2-го рода применяют чаще всего к стали для общего измельчения структуры, смягчения и улучшения обрабатываемости резанием.

Закалка без полиморфного превращения применима к любым сплавам, в к-рых при нагревании избыточная фаза полностью или частично растворяется в осн. фазе. Важнейшие параметры процесса -темп-pa нагрева, время выдержки и скорость охлаждения. Скорость охлаждения должна быть настолько большой, чтобы избыточная фаза не успела выделиться (процесс выделения фазы обеспечивается диффузионным перераспределением компонентов в твёрдом растворе ). Это условие выполняется, если дуралюмин и медные сплавы закаливают в воде; магниевые же сплавы и нек-рые аустенитные стали можно закаливать с охлаждением на воздухе. В результате закалки образуется пересыщенный твёрдый раствор. Закалка без полиморфного превращения может как упрочнять, так и разупрочнять сплав (в зависимости от фазового состава и особенностей структуры в исходном и закалённом состояниях ). Алюминиевые сплавы с магнием (см. Магналии) закаливают для повышения прочности; у бериллиевой бронзы же после закалки прочность оказывается ниже, а пластичность выше, чем после отжига, и закалку этой бронзы можно использовать для повышения пластичности перед холодной деформацией. Осн. назначение закалки без полиморфного превращения - подготовка сплава к старению (см. ниже ).


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.009 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал