Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Критерии точности измерений
Основным критерием точности результатов измерений является средняя квадратическая ошибка — оценка среднего квадратического отклонения, определяемая по формуле
Для ряда истинных ошибок при известном формула принимает вид (1.3) и называется формулой Гаусса:
где ; . Средней ошибкой называют оценку среднего отклонения n1 (центрального абсолютного момента первого порядка) и вычисляют по формуле:
Вероятной ошибкой называют оценку вероятного отклонения r. -это такое значение случайной ошибки D, больше или меньше которого, по абсолютной величине, ошибки равновозможны, т.е. . На практике определяется величиной, которую находят, расположив все ошибки D i в ряд в порядке возрастания их абсолютных величин. Вероятная ошибка будет расположена в середине такого ряда. При нормальном законе распределения случайных ошибок имеют место соотношения:
Соотношения называют критериями нормального закона (в разделе I, п. 3.5 они представлены в виде ; ).
Предельной ошибкой называют такую ошибку, больше которой в ряде измерений ошибок не должно быть. В качестве предельных выбирают величины, определяемые по правилу и (с вероятностями 0, 954 и 0, 997 соответственно). Перечисленные выше критерии , m, , , называют абсолютными ошибками. Относительной ошибкой называют отношение соответствующей абсолютной ошибки к значению измеряемой величины X (если X неизвестно, его заменяют результатом измерения x). Относительную ошибку обычно выражают в виде дроби с числителем, равным 1, например: — средняя квадратическая относительная ошибка; — предельная относительная ошибка величины X. Значения абсолютных ошибок получают с двумя–тремя значащими цифрами, а знаменатель относительной ошибки округляют до двух значащих цифр с нулями. Например, при и . .
|