![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Рух електрона в однорідному магнітному й електричному полях. Визначення питомого заряду електрона.
Нехай електрон влітає з швидкістю 1) Якщо 2) Якщо
де е і m - заряд і маса електрона. З механіки відомо, що
де R – радіус кола, по якому рухається електрон. З формул (5.20) і (5.21) отримаємо:
Отже, рух електрона в поперечному однорідному незмінному магнітному полі є коловим рухом у площині, перпендикулярній до вектора
Якщо кут так як це показано на рис.5.9. Якщо електрон рухається під дією неоднорідного електричного поля перпендикулярного до однорідного магнітного, то його траєкторія руху буде мати вигляд складної замкненої кривої відмінної від кола. Форма такої траєкторії зумовлена тим, що значення швидкості електрона в цьому випадку не є постійна. Такий рух електронів спостерігається у магнетронах – приладах, які використовуються для генерації електромагнітних хвиль надвисоких частот (НВЧ). Метод магнетрона може бути використаний для знаходження питомого заряду електрона Проаналізуємо траєкторію електронів, що рухаються під дією розглянутої комбінації електричного і магнітного полів. Будемо вважати, що початкова швидкість електрона, що вилетів із катода, дорівнює нулю, тобто не будемо враховувати теплову швидкість електронів. Тоді очевидно, що при заданій орієнтації електричного і магнітного полів рух електрона буде відбуватися в площині, перпендикулярній до осі електродів. Для розрахунків скористаємося полярною системою координат, тобто будемо характеризувати положення електрона відстанню від осі катода r і полярним кутом
Рух електрона в площині (r,
де q = е =
Постійна інтегрування С може бути знайдена з початкових умов. Радіус катода r к- величина мала, тому на початку руху електрона r теж мала величина, малі й швидкості електронів v, а отже, і величина Таким чином, кутова швидкість обертання електронів лінійно залежить від В і при даній індукції магнітного поля є величиною сталою. Наявність кутової швидкості обертання в електронів свідчить про викривлення їхніх траєкторій магнітним полем. Приблизний тип траєкторій електронів показаний на рис.5.11. Траєкторія електрона в загальному випадку є кривою із змінною, кривиною, що зменшується при наближенні до анода. Чим сильніше магнітне поле, тим більше викривлення траєкторії електронів. При В = 0 траєкторія є прямою лінією (1 на рис.5.11). При слабкому полі траєкторія дещо викривляється, але електрон все ж таки досягає анода (криві 2, 3). При деякому критичному значенні індукції магнітного поля Якщо у ролі вакуумного діода використати електронно-оптичний індикатор 6Е5С, то викривлення траєкторій руху електронів можна спостерігати візуально на спеціальному екрані цієї лампи. Її екран покритий флуоресцентною речовиною (віллемітом), яка світиться зеленим світлом при попаданні на неї електронів. Якщо магнітне поле соленоїда вимкнене то картинка, що спостерігається на екрані, показана на рис.5.12а. Широку конусоподібну тінь дає відбивальний електрод, дві інші, симетрично розміщені вузькі тіні зумовлені дротинами, що підтримують ковпачок. При вмиканні магнітного поля соленоїда тіні на екрані індикатора зазнають викривлення Рис.5.12б. Причиною цього явища є викривлення магнітним полем траєкторій руху електронів. При подальшому зростанні магнітного поля із збільшенням струму в обмотках соленоїда область свічення екрану зменшується, поступово стягуючись до його центру. При досягненні індукцією магнітного поля значення В Індукцію критичного поля Вкр можна знайти, якщо взяти до уваги, що при В = Вкр радіальна складова швидкості електрона
де U - різниця потенціалів між катодом і анодом. Початковою швидкістю електронів, що вилітають із катода, нехтуємо. Підставляючи у формулу (5.30) значення v і
Індукцію магнітного поля всередині соленоїда можна пов’язати з силою струму, що протікає по ньому, I с:
де n – кількість витків, що припадає на одиницю довжини соленоїда. З огляду на останнє співвідношення, рівняння (5.31) можна переписати у вигляді
де k = Рівняння (5.32) дозволяє обчислити відношення e / m. Для цього будуємо графік залежності kU від
5.9 Явище електромагнітної індукції.
Англійський вчений Фарадей відкрив електричну дію магнітного поля. Він експериментально довів, що в електропровідному контурі під впливом змінного магнітного поля виникає електрорушійна сила, яка зумовлює в ньому появу електричного струму. Це явище Фарадей назвав електромагнітною індукцією, а струм, що при цьому виникає – індукційним. Величина електрорушійної сили індукції пропорційна швидкості зміни магнітного потоку, тобто
Величина е.р.с. індукції залежить не просто від зміни магнітного потоку через поверхню, обмежену контуром, а від швидкості зміни магнітного потоку через цю поверхню. Знак мінус є математичним виразом закону Ленца, згідно з яким індукційний струм, що виникає в замкнутому провідному контурі, має такий напрям, при якому він своїм власним магнітним полем намагається протидіяти зміні магнітного потоку, який породжує цей струм.
|