Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Уравнение прямолинейной регрессии






Корреляционную связь в форме, близкой к прямолинейной, можно представить в виде уравнения прямой линии:

(11.8)

где – среднее значение результативного признака; х – значение факторного признака; – параметр уравнения, обычно характеризующий минимальное значение результативного признака; – коэффициент пропорциональности изменения признака-результата.

В уравнении 9.8 параметр характеризует среднее значение результативного признака у при элиминировании признака-фактора х, т.е. х=0. Коэффициент в зависимости от знака (+) или (–) показывает пропорциональность изменения результата у, т.е. его приращения или убывания при абсолютном изменении фактора на каждую его единицу.

Для нахождения параметров , уравнения 9.8 составляют и решают следующую систему нормальных уравнений:

(11.9)

(11.10)

При расчете искомых параметров , можно воспользоваться макетом табл. 11.5.

 

Т а б л и ц а 11.5. Вспомогательные расчеты для определения параметров уравнения прямолинейной связи

 

№ п.п. х у х2 ху
  х1 у1
  х2 у2
n хn уn
Σ Σ х Σ у Σ х2 Σ ху

 

Таким образом, для решения системы нормальных уравнений (11.9 и 11.10) необходимо найти значения Σ х, Σ у, Σ ху и Σ х2.

Допустим, необходимо определить, как изменяется в среднем урожайность рапса в зависимости от колебания доз минеральных удобрений по данным статистической совокупности из 30 сельскохозяйственных организаций, если известно, что дозы удобрений колеблются в пределах от 56 до 183 кг действующего вещества на 1 га, а урожайность рапса – от 16, 9 до 30, 4 ц/га.

Для составления уравнения прямолинейной регрессии (11.8) по имеющимся данным необходимо решить систему нормальных уравнений. С этой целью прежде всего составим рабочую табл. 11.6.

 

Т а б л и ц а 11.6. Вспомогательные расчеты для определения параметров уравнения прямолинейной взаимосвязи

 

№ п.п. Дозы удобрений, кг/га Урожайность рапса, ц/га Произведение вариант Квадрат доз удобрений
  х у ху х2
    16, 9    
    17, 2    
    30, 4    
Σ        

 

Подставим полученные в табл. 11.6 конкретные значения Σ х=3283, Σ у=640, Σ ху=91204 и Σ х2=535692 в уравнения 11.9 и 11.10; получим:

Для расчета коэффициента пропорциональности разделим уравнения 1, 2 на числа, находящиеся при . Получим:

Вычтем четвертое уравнение из третьего. Получим 21, 3 – 27, 7 = а+а+109, 4в – 163, 2 в; - 6, 4 = - 53, 8 в; в = 0, 12.

Теперь найдем параметр а, подставив значение в, например, в третье уравнение: 21, 3 = а + 109, 4. · 0, 12; а=8, 2.

Уравнение прямолинейной регрессии, выражающее зависимость между дозами минеральных удобрений и урожайностью рапса, имеет следующий вид:

(11.11)

Коэффициент пропорциональности в показывает, что повышение доз внесения в почву минеральных удобрений на 1 кг действующего вещества может вызвать прирост урожайности рапса в сельскохозяйственных организациях 12 кг. Это свидетельствует о существенной роли минеральных туков в достижении высоких и устойчивых урожаев сельскохозяйственных культур.

 

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.008 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал