Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Расчет прочности нормальных сечений
Характеристики материалов: Бетон класса С16/20 Нормативное сопротивление бетона - fck=16 МПа; Расчетное сопротивление при (табл. 6.1 [3]) Коэффициент, учитывающий длительное действие нагрузки, неблагоприятный способ ее приложения и т. д. - ; Арматура: сетка – класс S500, расчетное сопротивление ; каркас – класс S500, расчетное сопротивление (табл. 6.5 [3]) Для арматуры S500 при Еs=2∙ 105МПа. Пролёт 1, 3 Расчет введем по методу предельных усилий:
, где . kc – коэффициент, принимаемый равным для бетона: тяжелого – 0, 85; мелкозенистого – 0, 8; =417МПа – напряжения в арматуре, МПа, принимаемые для арматуры классов S240, S400, S500 равным расчетному сопротивлению арматуры , определяемому по таблице 6.5 [3]; =500МПа – предельное напряжение в арматуре сжатой зоны сечения, принимаемое равным 500МПа. где α – коэффициент, учитывающий длительное действие нагрузки, неблагоприятный способ ее приложения и т.д., определяемый по п. 6.1.5.4. [3]; b – ширина поперечного сечения; fcd – расчетное сопротивление бетона, определяемое в соответствии с п. 6.1.2.11, табл. 6.1[3]; d – рабочая высота сечения; По таблице 5 [1] в зависимости от подбираем ξ, η: ξ =0, 588; η =0, 706 Если данных значений ξ, η нет в этой таблице, необходимо произвести интерполяцию если данное значение находится в каком-либо из промежутков таблицы. Если же нет в этой таблице, то нужно провести экстраполяцию значений. Так как ξ =0, 588< =0, 605, то Принимаем ρ min=0, 13% Принимаем 2 25 и 2 28 S500 (Аs= 22, 14 cм2). Опора 1, 2 Расчет введем по методу предельных усилий:
, где . kc – коэффициент, принимаемый равным для бетона: тяжелого – 0, 85; мелкозенистого – 0, 8; =417МПа – напряжения в арматуре, МПа, принимаемые для арматуры классов S240, S400, S500 равным расчетному сопротивлению арматуры , определяемому по таблице 6.5 [3]; =500МПа – предельное напряжение в арматуре сжатой зоны сечения, принимаемое равным 500МПа. где α – коэффициент, учитывающий длительное действие нагрузки, неблагоприятный способ ее приложения и т.д., определяемый по п. 6.1.5.4. [3]; b – ширина поперечного сечения; fcd – расчетное сопротивление бетона, определяемое в соответствии с п. 6.1.2.11, табл. 6.1[3]; d – рабочая высота сечения; По таблице 5 [1] в зависимости от подбираем ξ, η: ξ =0, 593; η =0, 709 Если данных значений ξ, η нет в этой таблице, необходимо произвести интерполяцию если данное значение находится в каком-либо из промежутков таблицы. Если же нет в этой таблице, то нужно провести экстраполяцию значений. Так как ξ =0, 93< =0, 605, то Принимаем ρ min=0, 13% Принимаем 2 12 и 2 36 S500 (Аs = 22, 62 cм2). Пролёт 2 Расчет введем по методу предельных усилий:
, где . kc – коэффициент, принимаемый равным для бетона: тяжелого – 0, 85; мелкозенистого – 0, 8; =417МПа – напряжения в арматуре, МПа, принимаемые для арматуры классов S240, S400, S500 равным расчетному сопротивлению арматуры , определяемому по таблице 6.5 [3]; =500МПа – предельное напряжение в арматуре сжатой зоны сечения, принимаемое равным 500МПа. где α – коэффициент, учитывающий длительное действие нагрузки, неблагоприятный способ ее приложения и т.д., определяемый по п. 6.1.5.4. [3]; b – ширина поперечного сечения; fcd – расчетное сопротивление бетона, определяемое в соответствии с п. 6.1.2.11, табл. 6.1[3]; d – рабочая высота сечения; По таблице 5 [1] в зависимости от подбираем ξ, η: ξ =0, 51; η =0, 745 Если данных значений ξ, η нет в этой таблице, необходимо произвести интерполяцию если данное значение находится в каком-либо из промежутков таблицы. Если же нет в этой таблице, то нужно провести экстраполяцию значений. Так как ξ =0, 51< =0, 605, то Принимаем ρ min=0, 13% Принимаем 2 20 и 2 28 S500 (Аs= 18, 6 cм2).
Таблица 2.7 Назначение количества и диаметра стержней
2.5 Расчёт поперечной арматуры ригеля Максимальные поперечные силы, действующие в приопорных частях балки, найдем из условия равновесия балки (рис.2.4). Рисунок 2.4 - Расчетная схема к определению опорных реакций в ригеле . Рисунок 2.5 – Расчётная схема к определению опорных реакций в ригеле
Максимальная поперечная сила возникает на первой опоре. . Расчет прочности железобетонных элементов на действие поперечных сил начинается проверкой условия:
где Vsd - расчетная поперечная сила от внешних воздействий; VRd -сила, воспринимаемая железобетонным элементом без поперечного армирования. где Принимаем κ =1, 66 ; σ ср= 0 - при отсутствии осевого усилия (сжимающей силы), но не менее где Так как условие не выполняется, то для обеспечения прочности элементов по наклонному сечению, поперечную арматуру необходимо устанавливать по расчету. Расчетное сечение назначаем на расстоянии от опоры z=h-2·c = 600-2·30=540 мм.
Рисунок 2.6– Расчётное сечение
Рисунок 2.7– Расчётная схема
. На всех приопорных участках, равных l/4 пролета, принимаем шаг поперечных стержней . В средней части пролёта . Определяем продольные относительные деформации в растянутой арматуре, предварительно задавшись углом наклона трещин к горизонтали , по формуле: Для того, чтобы выяснить верно ли был задан угол необходимо воспользоваться таблицей 7.1[4]. Предварительно определим касательные напряжения, действующие в рассматриваемом сечении: ; Тогда . В соответствии со значениями и по таблице 7.1[4] определяем правильность принятия значения угла . В нашем случаи угол наклона трещин к горизонтали был принят верно. Определяем средние значения главных растягивающих деформаций (значение определяется итерационным путём): Несущая способность наклонного сечения определяется: где - составляющая поперечной силы воспринимаемая бетоном, кН; - составляющая поперечной силы воспринимаемая поперечной арматурой, кН. Определяем составляющую поперечной силы, воспринимаемой бетоном: , где: - главные растягивающие напряжения, МПа Главные растягивающие напряжения определяем по формуле: где - максимальный размер заполнителя; =20мм; - ширина раскрытия наклонной трещины. где S = 300 мм – расстояние между диагональными трещинами. Составляющая поперечной силы, воспринимаемая бетоном будет равна: Составляющая поперечной силы, которую должна воспринять арматура, равна: Составляющая поперечной силы, воспринимаемая арматурой, определяется по формуле: где α – угол наклона поперечной арматуры к продольной оси элемента, α =90°. Количество поперечной арматуры рассчитываем, приняв условие, что напряжение в ней достигают предела текучести: Предварительно задавшись шагом поперечной арматуры определяем её площадь. Принимаем шаг поперечной арматуры S=200 мм. Согласно таблице 7.5[4] минимальный коэффициент поперченного армирования для заданного класса бетона и класса арматуры . Тогда площадь поперечного сечения арматуры при шаге S=200 мм должна быть не менее: Принимаем 2 Ø 10, Asw=1, 57 см2 Действительная несущая способность наклонного сечения составляет: VSd должно удовлетворять условию:
|