Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Систем комплектных КРУЭ
Общие положения. Поскольку площадь, занимаемая КРУЭ, обычно составляет лишь 10—25 % площади открытых ПС, достичь требуемого сопротивления заземления становится труднее. Более того, отдельные элементы оборудования находятся близко друг к другу, что требует сетки высокой плотности, т.е. большего числа проводников в заданной области. Это обстоятельство позволяет снизить сопротивление заземления, но не является экономически эффективным путем, поскольку увеличение площади контура заземления более эффективно, чем увеличение числа проводников на единицу площади. Следовательно, впоследствии может оказаться необходимым применение дополнительных методов достижения необходимого сопротивления заземления. Переходное напряжение корпуса появляется за счет протекания высокочастотных токов, а не токов промышленной частоты. Это напряжение возникает при ударах молнии, срабатывании молниезащитных разрядников, замыканиях на землю и повторных зажиганиях разряда между контактами при коммутациях в основном при отключениях. Они появляются под действием токов, протекающих через систему заземления и емкости КРУЭ, и могут иметь времена нарастания от 3 до 20 нс, но длятся не более 20—30 мс. Высокочастотные токи вызывают локальные повышения потенциала за счет относительно высокой индуктивности обычных заземляющих проводников, например один 1 м прямого медного стержня имеет реактивное сопротивление около 60 Ом на частоте 10 МГц, тогда как на частоте 50 Гц это сопротивление составляет примерно 0, 003 Ом. Поэтому соединения должны быть короткими и прямыми насколько это возможно, так как изгибы медных проводни- ков также приводят к возрастанию реактивных сопротивлений на высоких частотах. Все КРУЭ содержат преднамеренные разрывы корпуса в целях предотвращения протекания электрического тока с одной секции на другую, которые, однако, позволяют высокочастотным процессам распространяться за пределы КРУЭ. Разрывы существуют в местах трансформаторных или реакторных вводов; кабельных муфт; изолированных фланцев, применяемых для крепления внешних трансформаторов тока, устанавливаемых вокруг металлическою корпуса; соединения фланцев с корпусом; устройств мониторинга; вторичных обмоток измерительных трансформаторов. В некоторых проектах корпусов КРУЭ основные фланцевые соединения делаются с применением изолирующей прокладки. В этом случае должны приниматься специальные меры для предотвращения появления искр в разрывах, которые могут вызвать срабатывание сигнализации у оперативного персонала. Переходное напряжение корпуса электромагнитным путем воздействует на защитные, управляющие и коммуникационные цепи. Если заземление недостаточно эффективно, высокочастотные напряжения на корпусе КРУЭ могут достигать 50 кВ, что делает необходимым экранирование защитных, коммуникационных и управляющих кабелей, присоединенных к корпусу КРУЭ и отделение их от корпуса везде, где только возможно. Появление на КРУЭ переходных повышений напряжения часто ставит вопросы безопасности персонала, имеющего доступ к подстанции. Однако переходное повышение напряжения представляет собой кратковременное неэнергоемкое явление, и до сих пор не было оснований предполагать, что оно напрямую опасно для персонала, работающего на КРУЭ. Возникновение искр в местах разрывов во время коммутаций может вызвать испуг 354 Глава 10. СПОСОБЫ СНИЖЕНИЯ ПОМЕХ НА ЭЛЕКТРИЧЕСКИХ СТАНЦИЯХ И ПОДСТАНЦИЯХ работников и тем самым причинить им вред. Следовательно, представляется целесообразным ввести предупреждения, ограничивающие доступ персонала во время коммутаций. Проектирование заземляющих систем КРУЭ. Контур заземления предназначен для создания пути малого сопротивления для токов КЗ, а также для высокочастотных токов, возникающих из-за переходного повышения напряжения. Перед проектированием контура необходимо выяснить наибольший ток КЗ на землю, проводимость фунта и наибольший допустимый потенциал земли, после чего несложно рассчитать необходимое полное сопротивление заземления. Например, если наибольший допустимый потенциал составляет 650 В, а ток замыкания — 10 кА, полное сопротивление заземления должно быть менее 0, 065 Ом. Указания по этому вопросу имеются в многочисленных национальных и международных стандартах. Для оптимизации конструкции контура заземления написаны компьютерные программы. Обычно на открытых ПС обеспечить достаточно низкое сопротивление заземления можно с помощью неизолированной медной рамки, проложенной по периметру НС, и внутренними проводниками для подключения различных элементов оборудования. Однако меньшая площадь, занимаемая КРУЭ, приводит к тому, что размеры контура будут меньше и, следовательно, могут потребоваться дополнительные мероприятия. Увеличение суммарной длины проводников, проложенных внутри одиночной рамки, снизит сопротивление сетки, но не прямо пропорционально увеличению длины (рис. 10.25). Однако, стремление обеспечить частые и короткие соединения между близко расположенными элементами оборудования служит дополнительным стимулом для прокладки сетки высокой плотности. Рис. 10.25. Различная структура сетки: а — суммарная длина проводников 55.2 м; относительное сопротивление 0, 0518 Ом/(Ом*м) при частоте 50 Гц; 6 — суммарная длина проводников 138 м; относительное сопротивление 0, 0419 Ом/(Ом*м) при частоте 50 Гц Если используется сплошное железобетонное основание, то соединение железной арматуры с контуром заземления безусловно приведет к снижению полного сопротивления заземления и обеспечит лучшее выравнивание потенциала внутри основания и по поверхности пола. Желательно, чтобы стержни арматуры были соединены друг с другом. Это мероприятие влечет за собой ряд практических затруднений, например необходимость осуществления заземления через бетонное основание и требование исключения нежелательных контуров высокочастотного тока. Возможно положить сетку сверху бетонного основания, но это увеличит сопротивление заземления, потому что сетка не будет проложена в земле. Снижение сопротивления заземления до допустимо малого значения невозможно с помощью описанных выше методов, поэтому для этой цели могут оказаться полезными вертикальные заземляющие стержни и химическая обработка грунта. Расчетные сопротивления заземления могут быть получены с помощью эмпирических формул, приведенных в различных стандартах, тем не менее, рекомендуется проведение измерений по завершении строительства. В случае необходимости проводят дополнительные мероприятия. Частые соединения корпуса КРУЭ с контуром заземления и то обстоятельство, что фазные оболочки также соединены
|