Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Транспортная матрица задачи без специализации






Корпуса, Изделия, [ч]
Иф
          10 000  
          10 000 141, 61
          10 000  
          10 000 282, 88
[ч]   81, 667   346, 667 38, 334   1914, 167

 

Примечание 7.2. При решении ТЗ в Excel, возможно, придется увеличить относительную погрешность решения в параметрах окна " Поиск решения".

Оптимальное решение ТЗ [ч] из табл.7.3 без фиктивного столбца (все значения округлены до трех знаков после запятой) имеет следующий вид:

 

3, 333   546, 667    
  72, 5      
         
6, 667        

 

Оптимальное решение РЗ [ч] получаем из оптимального решения ТЗ [ч] по формуле (7.6), например:

[ч]; [ч]; [ч];

 

3, 333   546, 667    
         
         
         

 

Значения – это время, в течение которого корпус будет выпускать изделия . Чтобы узнать, какое количество продукции будут выпускать корпуса, то есть [шт.], воспользуемся формулой (7.7), например:

[шт.]; [шт.].

В данном расчете округления (до меньшего целого) обязательны, поскольку выпускаемая продукция штучная:

 

 

         
         
         
         

 

Определим затраты на производство продукции без специализации:

; (7.9)

[руб].

 

При расчете затрат на производство значения в фиктивном столбце (строке) не учитываются. Затраты, рассчитанные по формуле (7.1) и формуле (7.9), в принципе, одинаковы, но в данной задаче будут несколько различаться. Это связано с тем, что в (7.9) мы использовали уже округленные до меньшего целого значения .

Производство со специализацией

Чтобы принять решение о том, какой корпус будем специализировать и на выпуске какой продукции, необходимо проанализировать распределение выпуска продукции по корпусам, то есть . В рассматриваемой задаче первый корпус занят в основном выпуском продукции (16 400 шт. изделия и 66 шт. изделия ). Число 16 400 шт. изделий – это наибольшее количество продукции одного и того же вида, производимое одним и тем же корпусом. Поэтому примем решение о специализации первого корпуса на выпуске изделий .

Таким образом, возникает задача оптимального распределения продукции по неспециализированным корпусам , и . При этом необходимо выяснить, сможет ли специализируемый корпус за свой фонд времени произвести плановое задание по выбранному виду продукции . В данном случае по видно, что корпус успевает произвести плановые 16 400 шт. изделия . Таким образом, в новой задаче будем распределять продукцию , , , по корпусам , и .

Примечание 7.3. В общем случае для ответа на вопрос, успеет ли специализируемый корпус выполнить план по конкретной продукции, необходимо использовать данные о фонде времени и производительности корпуса.

Примечание 7.4. Если бы корпус не успевал за свой фонд времени выпустить планируемое количество изделий , то в новой задаче надо было бы распределять между корпусами также и ту часть , которую не успел выпустить .

Распределительная матрица задачи без специализации, в которой учтено уменьшение затрат на производство на 15%, представлена в таблице 7.4.

 

Таблица 7.4


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.008 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал