Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Линейные дифференциальные уравнения первого порядка. Метод вариации постоянной для решения линейного дифференциального уравнения первого порядка.
Определение линейного уравнения первого порядка Дифференциальное уравнение вида где a(x) и b(x) − непрерывные функции x, называтся линейным неоднородным дифференциальным уравнением первого порядка. Метод вариации постоянной Сначала необходимо найти общее решение однородного уравнения: Общее решение однородного уравнения содержит постоянную интегрирования C. Далее мы заменяем константу C на некоторую (пока еще неизвестную) функцию C(x). Подставляя это решение в неоднородное дифференциальное уравнение, можно определить функцию C(x). Описанный алгоритм называется методом вариации постоянной. Разумеется, оба метода приводят к одинаковому результату. Решить дифференциальное уравнение .
Будем решать данную задачу методом вариации постоянной. Сначала найдем общее решение однородного уравнения: которое решается разделением переменных: где C − произвольное положительное число. Теперь заменим константу C на некоторую (пока неизвестную) функцию C(x) и далее будем искать решение исходного неоднородного уравнения в виде: Производная равна Подставляя это в дифференциальное уравнение, получаем: Интегрируя, находим функцию C(x): где C1 − произвольное действительное число. Таким образом, общее решение заданного уравнения записывается в виде:
|