Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Начисление процентов по смешанной схеме.






Начисление процентов по смешанной схеме представляет собой метод начисления процентов при котором используется схема сложных процентов для целого числа лет и схема про­стых процентов — для дробной части года.

Применяется данный метод в случае заключения кредитных договоров на период, отличающийся от целого числа лет. В этом случае проценты могут начисляться по схеме сложных процентов или по смешанной схеме.

 

 

Расчет проводится по следующей формуле:

Fn = P * (1+r)w * (1+f*r)

где w — целое число лет; f — дробная часть года; п = w + f.

Начисление непрерывных процентов.

Начисление непрерывных процентов представляет совой метод начисления процентов при котором проценты начисляются за очень малые промежутки времени.

Такой метод особенно актуален, когда финансовые операции осуществляются и регистрируются с помощью электронных методов и осуществляется непрерывная капитализация.

В этом случае наращенная сумма находится по формуле:

Fn = Р * е r п

где r — непрерывная ставка (ее также называют силой роста).

e – число Эйлера (равно 2, 78)

 

Процентный доход составит величину:

 

I=Р * [е r n -1]

Формула непрерывной капитализации позволяет вычислить капитал в любом периоде времени.

Задачи

 

Клиент поместил в банк вклад в сумме 30 тыс. руб. под 14% годовых с ежемесячной выплатой процентов. Какой процентный доход он будет получать каждый месяц?

 

Решение:

Зная, что Р = 30 тыс. руб., n =1/12года r = 0, 14, получаем

I=30 * 1/12 * 0, 14 = 0, 35 (тыс. руб.).

 

Вклад 300 тыс.руб помещен в банк на 5 месяцев под 15% годовых. Найти сумму, которую получит вкладчик через 5 месяцев.

 

Решение:

F = P * (1 + n*r) = 300 000 * (1 + 0, 15*5/12) = 318750 руб.

Это наращенная сумма, т.е. та которую получит обратно вкладчик

 

Предоставлена ссуда в размере 80 тыс. руб. 12 марта с погашением 15 августа того же года под простую процентную ставку 15% годо­вых. Рассчитать всеми различными способами величину начислен­ных процентов, если год високосный.

 

Решение:

Величина уплачиваемых за пользование ссудой процентов зависит от числа дней, которое берется в расчет.

Точное число дней, определяемое по таблице или непосредственно, составит 156.

Приближенное число дней ссуды равно: 18 дней марта (30- 12) + 120 дней (по 30 дней четырех месяцев: апрель, май, июнь, июль) + 15 дней августа = 153.

1. В расчет принимаются точные проценты и точное число дней
ссуды:

I = 80 000 * 156/366 * 0, 15 = 5115 руб.

2. В расчет принимаются обыкновенные проценты и точное число
дней:

I = 80000 * 156/360 *0, 15 = 5200 руб.

3. В расчет принимаются обыкновенные проценты и приближенное
число дней:

I = 80000 * 153/360 * 0, 15 = 5100 руб.

 

Таким образом, возможны следующие варианты начисления про­центов:

1) 5115 руб.; 2) 5200 руб.; 3) 5100 руб.

 

Сберегательный счет открыт 10 марта; на него положена сумма 8 тыс. руб. Затем 14 апреля на счет поступили 4 тыс. руб. Потом 25 июня сняли 3 тыс. руб., а 4сентября — 2 тыс. руб. Счет закрыт 20 декабря. Все операции осуществлялись в течение високосно­го года. Определить сумму, полученную владельцем счета, если процентная ставка равна 12% годовых; при расчете использовались обыкновенные проценты с точным числом дней.

 

Решение:

Вначале определяем суммы, которые последовательно фиксирова­лись на счете: 8 тыс. руб., 12 (8 + 4) тыс. руб., 9 (12 — 3) тыс. руб., 7 (9 — 2) тыс. руб. Затем находим сроки хранения этих сумм. Они соответственно равны 35, 72, 71 и 107 дней. Сумма процентных чи­сел составит:

k = P*t / 100 = (8000*35+12000*72+9000*71+7000*107) / 100 = 25, 32

Дивизор в данном случае равен D = T/r = 360/12 = 30. Следовательно, об­щая величина начисленных процентов составит I = 25, 32/30 = 0, 844 (тыс. руб.). Владелец счета получит 7 + 0, 844=7, 844 (тыс. руб.).

 

За какое время капитал в 300 тыс. руб. предоставленный в ссуду под 20% увеличится на такую же величину, что и капитал в 200 тыс. руб. предоставленный в ссуду с 10.04 по 23.06 под 17% годовых.

 

Решение:

Рассчитаем процентный доход в обоих случаях

I 1 = P * t/T * r = 300000 * t / 360 * 0, 20

I 2 = P * t/T * r =200000 * 73/360 *0, 17

Приравняем эти равенства и найдем t для первого случая

300000*t/360*0, 20 = 200000*73/360*0, 17

t/360 = 6894, 44 / 0, 20*300000 = 0, 1149

t = 0, 1149 * 360 = 41, 37 дней

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал