Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Структурные средние
Для расчета степенных средних необходимо располагать информацией не только о значениях признака, но и о величине их весов. При экономическом анализе такая полная информация не всегда доступна. В этом случае предпочтение отдается структурным средним. Структурные средние позволяют охарактеризовать структуру статистических рядов распределения. К таким показателям относятся мода и медиана. Модой называется варианта (значение признака), которая наиболее часто встречается в анализируемой совокупности. Наличие двух и более модальных значений может означать неоднородность статистической совокупности. В дискретном ряду распределения мода () — это варианта с максимальной частотой. Например, в табл. 3.5 наибольшей частотой является 88. Этой частоте соответствует модальное значение признака — 37. То есть, наибольшим спросом у покупателей пользуется обувь 37 размера.
Таблица 3.5 – Дискретный ряд распределения
В интервальном ряду распределения с равными интервалами мода исчисляется по формуле (3.10) где – нижняя граница модального интервала (интервала, имеющего максимальную частоту); – длина модального интервала; – частота модального интервала; – частота интервала, предшествующего модальному интервалу; – частота интервала, следующего за модальным интервалом. Определим моду интервального ряда по данным табл. 3.6.
Таблица 3.6 – Интервальный ряд распределения
Максимальная частота — 7. Модальным интервалом является интервал (8, 2— 9, 8). В соответствии с формулой (4.10) мода в этом случае =9, 0 млн. руб. Медианой (Ме) называется значение варьирующего признака, которое делит ранжированный ряд данных на две равные части: одна половина единиц анализируемой совокупности будет иметь значение признака меньше медианы, а другая — больше. При определении Ме по несгруппированным данным сначала их нужно расположить в возрастающем порядке (ранжировать). Затем — определить номер единицы совокупности, значение признака у которой и будет медианой. При небольшом объеме совокупности этот номер определяется визуально, а при большой совокупности — по формуле (3.11) Например, данные о стаже работы семи продавцов представлены в виде ранжированного ряда: 1, 2, 2, 3, 5, 7, 10. В этом случае = (7 + 1): 2 = 4. Соответственно, =3 года (четвертая по счету варианта в ранжированном ряду). Если число вариант будет четным: (1, 2, 2, 3, 4, 5, 7, 10), =9: 2=4, 5 и медиана будет равна средней арифметической из 4-й и 5-й варианты: (3 + 4): 2=3, 5 года. В дискретном ряду распределения (табл. 4.5) Следовательно, =37. Медиана по данным интервального ряда распределения с равными интервалами определяется следующим образом: 1. Для каждого интервала рассчитывается накопленная частота (см. графу 3 табл. 3.6). 2. Определяется медианный интервал. Таким интервалом является тот. накопленная частота которого больше или равна 1/2 численности единиц совокупности. В рассматриваемом примере (табл. 3.6) это будет третий интервал — (8, 2—9, 8). Накопленная частота этого интервала — 14, что больше, чем 12, 5 (половина от объема совокупности). 3. Медиана определяется по формуле (3.12) где – нижняя граница медианного интервала; – величина медианного интервала; – частота i-го интервала; – накопленная частота интервала, предшествующего медианному интервалу; – частота медианного интервала. Расчёт моды и медианы для вариационных рядов с неравными интервалами определяется аналогично, но показатели частоты заменяются показателями абсолютной или относительной плотности распределения, что обеспечивает сопоставимость неравных интервалов. Показатели плотности распределения определяются как отношение частоты к длине интервала: Средняя арифметическая, мода и медиана являются показателями центра статистического ряда распределения. В каждой конкретной задаче предпочтение может быть отдано любому из этих показателей. В симметричных рядах распределения величины всех трех показателей совпадают, и предпочтение отдается средней арифметической. Симметричным является распределение, в котором частоты любых двух вариант, равноотстоящих от центра распределения, равны между собой. Для асимметричных рядов предпочтительной характеристикой центра ряда распределения является медиана, поскольку занимает положение между модой и средней арифметической. В статистическом контроле качества продукции чаще пользуются медианой, а не средней арифметической, поскольку для определения ее в ранжированном ряду не требуется дополнительных расчетов и, кроме того, она не чувствительна к крайним значениям взятой контрольной пробы. Мода применяется при изучении спроса населения на потребительские товары с целью выявления характеристик продукции, пользующейся повышенным спросом.
|