Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Введение. Теоретические сведения
Спиральные антенны (СА) широко используются в качестве самостоятельных излучателей или в составе небольших антенных решеток как широкополосные излучатели круговой поляризации, работающие в режиме осевого излучения. Чаще всего СА представляет собой спиральный проводник ограниченной длины (несколько длин волн), намотанный на диэлектрический каркас, один конец проводника СА подсоединен к внутренней жиле возбуждающего коаксиального кабеля, другой оставлен свободным. Внешняя оплетка кабеля присоединяется к проводящему экрану (основанию) (рис. 2.1). Наиболее распространен режим работы цилиндрической СА, при котором диаметр цилиндра равен одной трети длины волны, при этом периметр витка спирали около одной длины волны. Именно в этом случае имеет место режим осевого излучения с круговой поляризацией. Различают цилиндрические и конические спирали, последние характеризуются большей полосой частот. В данной работе исследуются две цилиндрические СА с экраном, оптимизированные под диапазон частот 1.7–2.7 ГГц (НЧ спиральная антенна) и 2.5–4 ГГц (ВЧ антенна). Экспериментальные частотные зависимости коэффициента отражения в тракте питания этих антенн приведены на рис. 2.2.
Геометрия цилиндрической СА приведена на рис. 2.4. Здесь введены следующие обозначения:
Рис. 2.3
Рис. 2.4 Рис. 2.5 поясняет механизм формирования поля круговой поляризации в режиме осевого излучения СА. При длине витка СА, близкому к длине волны, в антенне устанавливается режим бегущей волны тока и в каждый момент времени одному витку СА можно поставить в соответствие два одина-
ковых синфазных изогнутых диполя. В частности, на рис. 2.5, а, б, в последовательно, в трех разных моментах времени виток эквивалентен двум изогнутым диполям, принимающим различные угловые положения в плоскости витка. Результирующий вектор напряженности излученного электрического поля вращается с постоянной длиной. ДН спиральной антенны как ДН антенной решетки, состоящей из кольцевых плоских излучателей. Для приближенного расчета диаграммы направленности СА ее удобно рассматривать как систему, состоящую из N одинаковых элементов, расположенных вдоль продольной оси z с шагом d. Такая система носит название одномерной (линейной) антенной решетки. Ее элементами в данном случае являются неплоские витки спирали. Они возбуждены со сдвигом фаз от витка к витку
Системный множитель. В общем случае, когда в решетке скачок фазы
В нашем случае
Диаграммы направленности витка спирали. Характеристика направленности такого витка известна из теории антенн, она имеет две составляющие – по ортам сферической системы координат
где
КНД и ширина главного лепестка диаграммы направленности. Для приближенного расчета параметров ДН спиральных антенн полезны следующие полуэмпирические формулы [1], [2]. Ширина главного лепестка ДН по уровню половинной мощности (град.):
Коэффициент направленного действия цилиндрической СА
|