![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Математическое описание МПА
Математическое моделирование МПА следует выполнять на основе решения интегрального уравнения относительно двумерного распределения токов по плоскости антенны с ядром, зависящим от свойств материала подложки, такой подход является наиболее точным и реализован в ряде стандартных пакетов (MWOffice, Agilent и др.). Вместе с тем, существует ряд упрощенных подходов к расчету характеристик МПА, позволяющих с инженерной точностью оценить основные полевые характеристики. Одним из таких подходов является метод, разработанный Дернеридом, сводящийся к аналогии между МПА и отрезком длинной линии, нагруженным с двух сторон на резистивные и емкостные элементы. Резистивные элементы эквивалентны потерям на излучение, двух щелей с длиной равной ширине МПА W (рис. 7.1, а), расположенных на расстоянии равном длине элемента L, емкостные элементы описывают краевой эффект (емкость между концом полосковой линии передачи и проводящим основанием). Резонансная частота
Здесь Увеличение диэлектрической проницаемости подложки при фиксированной геометрии элемента приводит к понижению резонансной частоты. В ряде случаев в целях уменьшения габаритов антенных систем прибегают к использованию материалов подложки с относительной диэлектрической проницаемостью от 2 до 10. Одновременно с этим уменьшение размеров МПА ведет к сужению полосы рабочих частот и уменьшению КНД. Диаграмма направленности МПА определяется как:
Здесь Диаграмма направленности антенной решетки вычисляется в соответствии с теоремой перемножения как произведение множителя системы
где
|