Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Задание 1






 

Выполнение этого задания предполагает знание алгоритма геометрического решения задач линейного программирования.

 

Типовой пример:

Построить на плоскости область решений системы линейных неравенств

 

и геометрически найти наименьшее и наибольшее значения линейной функции f = 2 x 1 + 4 x 2 в этой области.

 

Решение:

Построим множество решений системы неравенств:

1)

а) – прямая l 1, проходящая через точки (0; 1) и (-1; 0);

б) точка (0; 0) удовлетворяет неравенству Таким образом, решением первого неравенства системы ограничений являются точки прямой l 1: и полуплоскости, содержащей начало координат (0; 0).

2)

а) – прямая, проходящая через точки (0; 11) и (11; 0);

б) точка (0; 0) удовлетворяет неравенству , т.е. решением второго неравенства являются точки прямой l 2: и полуплоскости, содержащей начало координат (0; 0).

3)

а) – прямая l 3, проходящая через точки (2; 3) и

(- 3; 2);

б) точка (0; 0) не удовлетворяет неравенству , значит решением третьего неравенства системы ограничений являются точки прямой l 3: и точки полуплоскости, не содержащей начало координат (0; 0).

Решением системы ограничений является треугольник АВС, внутри которого пересекаются решения всех неравенств системы (рис.1).

x1 11 - 10 - 9 - 8 - 7 - B 6 - • 5 - 4 - A • l3 l3 3 - • C • 2 - 1 - ׀ ׀ ׀ 0 ׀ ׀ ׀ ׀ ׀ ׀ ׀ ׀ ׀ ׀ ׀ ׀ ׀ ׀ ׀ ׀ x2 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 11 l1 l1 l2    

Рис. 1. Множество допустимых решений системы ограничений

 

Чтобы найти наименьшее и наибольшее значения целевой функции f = 2х1 + 4х2 положим f = 0, тогда 1 + 4х2 = 0 – прямая, проходящая через точки (0; 0) и (2; -1).

Градиент целевой функции – вектор (2; 4) (начало вектора лежит в точке (0; 0), а конец в точке, координаты которой равны коэффициентам перед переменными в выражении функции f).

Перемещая прямую f = 0 в направлении вектора видим, что наименьшее значение целевая функция f = 2х1 + 4х2 имеет в точке А, а наибольшее в точке В (рис. 2).

x1 11 - 10 - 9 - 8 - 7 - B 6 - max 5 - 4 - A 3 - l3 2 - min C 1 - 0 -3 2 1 1 2 3 4 5 6 7 8 9 10 11 x2 l2 l1 f=0  


Рис. 2. Наименьшее и наибольшее значения функции f = 2х1 + 4х2

 

Определим координаты точек А и В, решив системы уравнений тех прямых, точками пересечения которых они являются.

А: A (2; 3);

В: В (5; 6).

Вычислим наименьшее и наибольшее значения целевой функции:

fmin (A)= 2·2+4·3=16,

fmax (B)= 2·5+4·6=34.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.009 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал