Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Подготовка учеников к изучению нумерации чисел и арифметических действий.Стр 1 из 26Следующая ⇒
Лекционный материал к модулю 2. МЕТОДИКА ИЗУЧЕНИЯ НУМЕРАЦИИ ЧИСЕЛ И АРИФМЕТИЧЕСКИХ ДЕЙСТВИЙ В НАЧАЛЬНОМ КУРСЕ МАТЕМАТИКИ КОМПЛЕКСНАЯ ЦЕЛЬ: · актуализировать приобретенные в курсе математики знания студентов относительно теоретических основ данного содержательного материала; · ознакомить с заданиями и этапами изучения нумерации чисел и арифметических действий; · сформировать у будущих учителей соответствующие теоретические знания из методики преподавания данных тем и практические умения: подбирать и использовать необходимые методы обучения относительно обработки с учениками понятий чисел и вычислительных приемов; · организовывать активную деятельность учеников на уроках; · моделировать учебные ситуации и соответствующие фрагменты уроков. ПЛАН І. Методика изучения нумерации чисел в начальных классах Подготовка учеников к изучению нумерации чисел и арифметических действий. Методика изучения нумерации чисел первого десятка Изучение чисел второго десятка Нумерация чисел в пределах 1000. Методика изучения нумерации многозначных чисел ІІ. Методика изучения арифметических действий в начальной школе Методика проработки действий сложения и вычитания в пределах первого десятка Действия сложения и вычитания в пределах 100 Умножение и деление в пределах 100 І. Методика изучения нумерации чисел в начальных классах Подготовка учеников к изучению нумерации чисел и арифметических действий. К приходу в школу ребенок, как правило, имеет некоторые представления о числах в пределах 10. Уже в 2 - 3 года, отвечая на вопрос, сколько ему лет, малыш показывает пальчики и называет соответствующее слово-числительное. Со временем в процессе игры расширяется запас представлений чисел. Первые представления детей о числе связаны с его количественной характеристикой, ребенок может ответить на вопрос: " Сколько"?. Главными задачами учителя в период подготовки детей к изучению нумерации чисел и арифметических действий наряду из уточнением знаний детей есть: формирование умений обнаруживать отношение " больше", " меньше", " столько само", " поровну", " непоровну"; превращать неравнозначные множества в равнозначные; научить понимать значение слов " каждый", " все", " один", " много"; осуществлять количественный и порядковый счет и понимать ее сущность; отвечать на вопрос " сколько"? и " который"?. Основными методами обучения учеников в данный период наглядно- иллюстративный, практический, а также широкое использование дидактичных игр. Для реализации целей и решения задач подготовительного периода учитель предлагает детям разнообразные упражнения с индивидуальным и общеклассным роздаточным материалом. Это могут быть геометрические фигуры, иллюстративные карточки с изображением известных детям персонажей, животных, бытовых предметов и тому подобное. При проработке отношений " больше", " меньше", " столько же", " поровну", " непоровну" важно научить детей способам установки взаимно-однозначного соответствия. 1. Способ наложения предметов одного множества на предметы второго: а)
- треугольников столько же, сколько кругов; - кругов столько же, сколько треугольников. б)
- треугольников больше, чем кругов; - кругов меньше, чем треугольников. 2. Способ расположения предметов одного множества под предметами второго:
а) v v vvvv b b bbbb
б) vvvvvv bbbbb 3. Образование пар, то есть соединение каждого предмета одного множества с каждым предметом второй: а) б)
Такие упражнения готовят учеников к осознанному овладению операцией счета. Большинство детей шестилетнего возраста, которые приходят к школе, владеют навыками счета, хотя ошибки возможны. Например, после числа семь, называется число девять. Поэтому для овладения операцией счета, ученики должны прежде всего заучить порядок слов-числительных. Этому способствуют однотипные упражнения, которые начинаются со слова,: " Сколько".?. При этом следует иметь в виду, что для детей, которые уже владеют знаниями порядка слов-числиельных, выполнять такие упражнения не интересно. Поэтому учитель должен сочетать задание на проработку порядка слов-числительных с заданиями, которые выполняют другую цель, с заданиями развивающего характера.
Например 1. Что изменилось? Что не изменилось? а)
б)
2. Чем похожие рисунки? Чем отличаются?
В качестве сходства выступает признак - количественная характеристика (одинаковое количество предметов - четыре); отличаются рисунки порядком. Выполняя данное задание, ученики овладевают также такими понятиями, как " за", " перед", " между", а также порядковыми числительными: на левом рисунке солнышко - первое, на правом - третье.
3. По какому признаку подобранные пары картинок?
4. Найди лишнюю картинку:
Анализируя рисунки с точки зрения разных их признаков, ученики одновременно упражняются в счете. Важно сформировать у учеников понимание того, что результат счета не зависит от порядка расположения предметов, которые считаются. Для этого учитель предлагает посчитать предметы, которые расположены в строке, слева направо, потом справа налево. В следующем упражнении учитель располагает эти же предметы в столбик, предлагает посчитать их сверху вниз и наоборот. При этом проводится беседа за вопросами: " Какое число назвали последним"?; " Сколько предметов"?; " Изменяется ли количество предметов от того, в каком порядке их считают"?. Ученики в состоянии сами сделать выводы о том, что последнее число, которое называется при счете указывает на количество предметов; результат счета предметов не зависит от того, в каком порядке их считают. В следующей серии упражнений предметы располагаются беспорядочно. Учитель сам начинает считать, совершая при этом " ошибки": один раз при счете пропускает предмет, другой раз считает один и то же предмет дважды. Ученики исправляют ошибки и приходят к выводу: " Счет необходимо начинать с числа 1; при счете нельзя считать один и тот же предмет дважды; не должно пропускать ни одного предмета". Исправляя учеников в порядковом счете, учитель подводит их к выводам: " Называя число, которое показывает, какой предмет стоит при счете, например, четвертый, имеют в виду только один предмет"; " При порядковом счете важное значение имеет порядок счета: один и тот же предмет может быть третьим, если считать слева направо, и может быть вторым, если считать справа налево". Очень полезным является упражнение за следующим рисунком:
1. Подсчитай, сколько всех треугольников. Из какого цвета ты начал счет? 2. Какой треугольник по порядку четвертый 3. Какой треугольник может быть четвертым, если первый - зеленый, второй -жолтый? (Если первый - зеленый, второй - красный) 4. Может ли синий треугольник быть четвертым? Какой треугольник в этом случае будет первым? 5. Какой треугольник может быть четвертым, если первый - синей? Все от-веты проверяются счетом. В процессе выполнения таких упражнений ученики овладевают правилами: первым при счете может быть указан любой объект данной совокупности, важно только, чтобы ему отвечало числительное " один"; ни одному объекту невозможно поставить в соответствие два слова-числительных; ни один объект не должен быть пропущен при счете.
|