Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Пример 12Стр 1 из 6Следующая ⇒
З а д а ч а 11 Правило 1. Чтобы вычислить , нужно вместо переменной х поставить её предельное значение . Если то Если то . Если то - неопределенность. Правило 2. Чтобы раскрыть неопределенность в алгебраическом выражении, надо в числителе и знаменателе выделить множитель , который стремится к нулю, и на него под знаком предела сократить. Правило 3. Если в числителе и знаменателе стоят многочлены, то чтобы получить множитель , нужно многочлены разложить на множители. Пример 11 Вычислить предел . . Найдем корни многочленов .
Контрольные варианты к задаче 11 Вычислить пределы функции:
З а д а ч а 12 Пример 12 Вычислить предел . В числителе и знаменателе получаются нули за счет сомножителя , который стремится к нулю при . Разложим многочлены на множители, разделив их на . - - .
- - - - . Замечание. При разложении многочлена в числителе можно было применить способ группировки и вынесения общего множителя, а в знаменателе найти корни, решив биквадратное уравнение.
Контрольные варианты к задаче 12 Вычислить пределы функций:
|