Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Параметры взрыва топливно-воздушных смесей в режиме детонации
1.2.1 Параметры детонации ТВС Параметры на фронте детонационной волны в ТВС полностью определяются удельной теплотой взрыва смеси , ккал/кг, показателем адиабаты продуктов взрыва , начальным давлением , Па, и плотностью смеси , кг/м3. ; (10) , где D - скорость распространения фронта детонационной волны (скорость детонации), м/с; , , - давление, Па, массовая скорость, м/с, и скорость звука, м/с, продуктов детонации на фронте волны. Формулы (6.10), полученные для сильной детонационной волны, справедливы с погрешностью не более 5% при давлении на фронте > 10 . Плотность смеси связана с плотностью окружающего воздуха соотношением (11) где = Мг / (Мв + Мг) - относительная массовая концентрация горючего; Мг, Мв - масса горючего и воздуха в смеси. При использовании гетерогенных ТВС, то есть горючего в конденсированной фазе, . Тогда формула (11) принимает вид Удельная теплота взрыва QCM зависит от состава смеси и может быть рассчитана по удельной теплоте взрыва на единицу массы горючего QГ, если верно предположение, что в бедных ТВС реагирует вся масса топлива, а в богатых - лишь часть, соответствующая наличию кислорода в смеси. В этом случае нетрудно получить (12) где - стехиометрическая концентрация. Удельная теплота взрыва на единицу массы горючего определяется с помощью термодинамических расчетов. Кроме того, за можно принять стандартную теплоту сгорания горючего (табл. 1). При известных теплоте взрыва и скорости детонации ТВС показатель адиабаты продуктов взрыва рассчитывается по формуле, являющейся следствием пеового соотношения (10) . (13) Анализ результатов термодинамических расчетов показывает, что показатель адиабаты продуктов взрыва принимает минимальное значение при детонации ТВС стехиометрического состава и в первом приближении в области концентрационных пределов взрываемости смеси может быть описан линейной зависимостью (14) где =1, 4 - показатель адиабаты воздуха; - расчетная константа. Для углеводородных газообразных и жидких топлив значения и меняются незначительно ( = 1, 23 ÷ 1, 25; = 1, 5 ÷ 1, 7) и могут быть приняты равными средним значениям = 1, 24; = 1, 6. Для конденсированных горючих, остающихся в продуктах взрыва богатых ТВС в таком же состоянии, . Например, при взрыве аэровзвеси пудры алюминия . При точечном источнике инициирования (взрыв заряда конденсированного ВВ, мощный искровой разряд и т.п.) формирующаяся детонационная волна обладает сферической симметрией (в ТВС с постоянной по объему концентрацией горючего) и параметры в продуктах взрыва за ее фронтом описываются автомодельным решением. В частности, для массовой и звуковой скоростей в продуктах взрыва справедливы соотношения (15) (16) где - относительная координата за фронтом детонационной волны (r - расстояние от точки инициирования; t - время с момента начала инициирования), изменяющаяся от нуля в центре симметрии до единицы на фронте волны; , - координата границы центральной области покоя и скорость звука в ней. Две последние величины определяются по зависимости , (17) которую с учетом (10) можно переписать в виде . Для смесей углеводородных топлив с воздухом. ( = 1, 24) из последнего соотношения следует ; . Давление в продуктах взрыва за фронтом детонационной волны рассчитывается через скорость звука (6.16) по изоэнтропической зависимости (18) Распределение давления p и массовой скорости и в продуктах взрыва за фронтом детонационной волны в стехиометрической углеводородной ТВС, построенные с использованием формул (15-18), приведены на рис. 1. Полагая, что r = const, t = var, можно построить зависимости p и u от времени в месте размещения объекта в области топливно-воздушной смеси, где на него не успевает оказывать влияние волна разрежения, приходящая от границы облака. Рис. 1. Распределение давления(p) и массовой скорости (u) в продуктах взрыва за фронтом детонационной волны в стехиометрической углеводородной ТВС 6.1.2.2 Параметры детонационного взрыва внутри облака ТВС Анализ результатов математического моделирования сферического взрыва газовых и гетерогенных ТВС показывает, что существуют две характерные области: внутри и вне смеси. Параметры в них зависят от соответствующих характеристик и меняются различным образом. При этом особое значение приобретают показатели на границе облака, связывающие поле взрыва обеих областей. Начальное избыточное давление воздушной ударной волны может быть найдено из решения задачи о распаде произвольного разрыва. Учитывая относительно низкую интенсивность детонационной волны в ТВС, нетрудно получить приближенное аналитическое решение: , (19) где - плотность воздуха, кг/м3. Поскольку мало отличается от , для стехиометрических углеводородных ТВС ( 1, 24) соотношение (19) дает = 0, 78 . Для удельного импульса избыточного давления на границе облака ТВС , где - длительность фазы сжатия в волне, которая для сферической симметрии приблизительно равна 3, 3 / D ( - радиус облака). По результатам анализа численных результатов получено . (20) Для стехиометрических углеводородных ТВС (6.20) дает . Максимальное избыточное давление внутри облака ТВС совпадает с избыточным давлением на фронте детонационной волны и рассчитывается по соответствующему соотношению из (10). Для удельного импульса избыточного давления вокруг места инициирования, учитывая автомодельное решение для сферической детонационной волны, может быть получена функциональная зависимость , где а, в - константы, которые по результатам численных расчетов равны 0, 96 и 0, 47. Следовательно, (21) В окрестности границы облака, за счет быстрого прихода волны разрежения, величина удельного импульса фазы сжатия может заметно отклоняться от зависимости (21). Обобщая эту формулу для всей области внутри ТВС, с учетом численных результатов можно записать , где и - значения импульса, вычисленные по (21) для рассматриваемой точки границы облака . С помощью (6.20), (6.21) последнее соотношение приводится к виду . (22)
В случае применения стехиометрических углеводородных ТВС формула (22) упрощается и принимает вид
6.1.2.3 Параметры воздушной ударной волны при детонации ТВС В качестве основных параметров, определяющих распространение взрывных волн, как правило, принимают энергию взрыва Е, а также давление и плотность окружающего воздуха. Однако физически более обоснованным является выбор не энергии взрыва, а энергии, уходящей в ударную волну (равна работе расширяющихся продуктов взрыва над окружающей средой). При взрыве зарядов конденсированного ВВ энергия ударной волны составляет порядка 0, 9 Е и слабо меняется при переходе от одного взрывчатого вещества к другому. При детонации ТВС работа расширяющихся продуктов взрыва над окружающей атмосферой составляет примерно половину от выделившейся энергии Е и может заметно меняться в зависимости от состава смеси и параметров окружающего воздуха. Поэтому в качестве основного определяющего параметра ударных волн при детонации ТВС выбрана энергия ударной волны , которую можно рассчитать по формуле , где - полная энергия, которая может выделиться при реагировании всей массы горючего; - коэффициент полноты реакции горючего; - КПД взрыва, то есть отношение энергии, уходящей в ударную волну, к выделившейся при взрыве. В случае идеальной детонации, то есть выделения всей энергии во фронте волны, в соответствии с (12) коэффициент полноты реакции горючего для ТВС с постоянной по объему концентрацией равен (24) Для типичных углеводородных ТВС на верхнем концентрационном пределе взрываемости коэффициент полноты реакции горючего составляет примерно 0, 25; в плохоперемешанных смесях с областями концентрации горючего, выходящей за пределы взрываемости, - 0, 02 ÷ 0, 1. КПД детонационного взрыва ТВС достаточно точно может быть рассчитан по формуле , (25) которая вытекает из модели равновесного расширения продуктов взрыва от детонационного давления до давления в окружающей атмосфере. Для стехиометрических углеводородных ТВС с давлением на фронте детонационной волны значение КПД взрыва изменяется в диапазоне . Максимальное избыточное давление в точке, удаленной на расстояние r, м, от центра детонационного взрыва сферического облака ТВС, соответствует давлению на фронте ударной волны и рассчитывается по аппроксимационной зависимости (26) Третье слагаемое в квадратной скобке (26) описывает очень резкий спад давления на фронте воздушной волны вблизи облака ТВС и заметно влияет на результаты расчетов лишь при . На больших расстояниях им можно пренебречь. Константа А определяется из (26) по известному начальному давлению ударной волны (19) при условии, что . Удельный импульс избыточного давления i фазы сжатия ударной волны на удалении r, м, от центра взрыва рассчитывается по формуле . (27) Выражение в квадратной скобке (27) описывает немонотонное изменение г в окрестности облака ТВС и при становится практически равным единице. Константа В вычисляется по известному значению удельного импульса на границе облака ТВС (20) из (27) при . Для углеводородных ТВС на любых расстояниях () значение выражения в квадратных скобках отличается от единицы не более чем на 10%. Поэтому с указанной погрешностью для оценки удельного импульса воздушной ударной волны можно воспользоваться зависимостью . (28)
Запись выражений для определения максимального избыточного давления и удельного импульса (26-28) с использованием позволяет учесть влияние давления окружающей атмосферы (при взрывах на различной высоте над уровнем моря), а введение в формулы для расчета удельного импульса дает возможность также учитывать температуру и влажность воздуха. В случае формирования облака ТВС непосредственно у поверхности земли в первом приближении его можно представить в виде полусферического объема. При этом в зависимости (26-28) следует подставлять удвоенную энергию ударной волны, рассчитанную по соотношению (23), а радиус облака - вычислять как для полусферы.
|