Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Критерий (Пирсона) для простой гипотезы
Пусть выборка из генеральной совокупности . Проверяется гипотеза против альтернативы . Представим выборку в виде группированного ряда, разбив предполагаемую область значений случайной величины на интервалов. Пусть - число элементов выборки попавших в -ый интервал, а - теоретическая вероятность попадания в этот интервал при условии истинности . Составим статистику , которая характеризует сумму квадратов отклонения наблюдаемых значений от ожидаемых по всем интервалам группирования. Теорема Пирсона. Если верна, то при фиксированном и . (1) Таким образом, статистику можно использовать в качестве статистики критерия согласия для проверки гипотезы о виде закона распределения, который будет иметь вид: , , (2) где -квантиль распределения . Данный критерий называется критерием или критерием согласия Пирсона. Замечание. Критерий не состоятелен для альтернатив, для которых для всех . Поэтому, следует стремиться к как можно большему числу интервалов группирования. Однако, с другой стороны, сходимость к величины обеспечивается ЦПТ, то есть ожидаемое значение для каждой ячейки не должно быть слишком мало. Поэтому обычно число интервалов выбирают таким образом, чтобы .
|