Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
При заполнении уровня и подуровня устойчивость электронной конфигурации возрастает и
2) особой устойчивостью обладают заполненные (s2, p6, d10, f14) и наполовину заполненные (p3, d5, f7) конфигурации. И наоборот, электронные конфигурации, близкие к наиболее устойчивым, весьма неустойчивы и стремятся перейти в устойчивые за счет соседних подуровней. Так, в случае Cr (3d44s1) неустойчивая 3d4 конфигурация переходит в устойчивую 3d5 за счет соседней 4s2, переходящей в 4s1 (очевидно затрата энергии на удаление электрона с 4s-АО меньше выигрыша в энергии при заполнении 3d4-АО до 3d5). Такие отклонения имеют место во многих случаях: для d-элементов: Cr, Cu, Nb, Mo, Ru, Rh, Pd, Ag, Pt, Au; для f-элементов: La, Gd, Ac, Th, Pa, U, Cm. Причем нарушение последовательности заполнения АО у актиноидов связано также со сближением 6d- и 5f-подуровней, так что " легкие" актиноиды от Ac до Pu по своим свойствам похожи на d-элементы. Атомные и ионные радиусы. Размер атомов и ионов не может быть определен точно, так как электронная плотность на их периферии убывает экспоненциально. Поэтому используются так называемые эффективные радиусы (половина расстояния между центрами двух смежных атомов в кристаллах), или орбитальные радиусы атомов (принимают расстояние от ядра до последнего максимума электронной плотности). Однако закономерности в изменении радиусов атомов и ионов не зависят от способов их определения. Наблюдается периодичность изменения атомных радиусов, особенно у s- и р- элементов. У d- и f- элементов кривая изменения радиусов по периоду имеет более плавный характер. В одной и той же группе при одинаковом строении внешней валентной оболочки радиусы атомов (или ионов одинакового заряда) возрастают в связи с увеличением числа электронных оболочек. Эта закономерность хорошо выполняется для элементов главных подгрупп (s-, p- элементов). Однако для побочных подгрупп d-элементов радиус возрастает от элемента первого переходного ряда (от Sс до Zn) ко второму (Y…- Cd), а элемент третьего переходного ряда (Lu..Hf) имеет размер почти равный размеру элемента второго ряда. Это объясняется эффектом f-сжатия: между вторым и третьим рядами происходит заполнение 4f-подуровня третьего снаружи слоя, который слабо экранирует внешние 6s2 электроны от ядра, в то время как заряды ядер элементов третьего ряда намного больше, чем второго, и потому электроны сильно притягиваются к ядру. На фоне общего уменьшения радиусов внутри каждого периода у ряда атомов имеются отклонения, связанные с существованием устойчивых (s2, p3, p6, d5, d10, f7, f14) и неустойчивых (s1, p1, p4, d1, d4, d6, d9) конфигураций. Например, орбитальный радиус Al (3s23p1) больше, чем у Mg (3s23p0); у Cr (4s13d5) больше, чем у V (4s23d3) и т. д.. Орбитальные конфигурации и первые энергии ионизации атомов. Энергия, необходимая для отрыва электрона от атома называется энергией ионизации (I). В результате ионизации атомы превращаются в положительно заряженные ионы: Э + I1 ® Э+ + ē.
Отрыву первого электрона соответствует первая энергия ионизации I1, второго – вторая I2 и т.д. Энергию ионизации выражают либо в кДж/моль, либо в электрон-вольтах (эВ) (1эВ = 96, 49 кДж/моль). Энергия ионизации зависит от электронной конфигурации атома или иона и ее изменение имеет периодический характер. Сравним между собой первые энергии ионизации элементов I1(Э). I1 изменяется в зависимости от номера элемента (Z) периодически. При этом максимумы приходятся на устойчивые электронные конфигурации: s2 , p3, p6, d10... а минимумы – на неустойчивые: s1, p1, p4. Энергия ионизации возрастает по периоду (заряд возрастает, радиус уменьшается). В одной и той же группе энергия ионизации уменьшается с увеличением порядкового номера элемента, что обусловлено увеличением атомных радиусов. Сродство к электрону и электроотрицательность. Энергия, которая выделяется при присоединении электрона к атому, называется сродством к электрону (Eср) (кДж/моль или эВ).
Эº + е = Э- + Еср.
Сродство к электрону зависит от положения элемента в ПС. Наибольшие значения сродства к электрону имеют галогены (элементы главной подгруппы VII группы, кислород, сера), наименьшие и даже отрицательные - элементы с электронной конфигурацией s2 (He, Be, Zn) и с полностью или наполовину заполненными р-АО (инертные газы Ne, Ar, Kr, N, P). Электроотрицательность. Согласно Полингу, “электроотрицательность есть способность атома в молекуле или сложном ионе притягивать к себе электроны, участвующие в образовании связи”. Очевидно, у инертных газов электроотрицательность отсутствует, т.к. внешний уровень в их атомах завершен и устойчив. Электроотрицательность возрастает в направлении слева направо для элементов каждого периода и уменьшается в направлении сверху вниз для элементов каждой главной подгруппы ПC Наибольшими значениями c обладают галогены (самой большой электроотрицательностью характеризуется фтор), а наименьшими - щелочные металлы (Fr - наиболее электроположительный). Обычно c измеряют не в эВ или Дж, а в условных относительных единицах. По шкале Полинга) c (F) принята равной 4, 0, а c (Li) = 1. Пример 3. Учитывая положение в Периодической системе, дать общую характеристику и указать химические свойства фосфора. Решение. Фосфор находится в третьем периоде, V группе, порядковый номер 15, молекулярная масса 31. Ядро атома состоит из 15 протонов и 31-15 = 16 нейтронов. 15 электронов расположены на трех энергетических уровнях (третий период), валентных электронов - 5 (V группа). Фосфор - элемент главной подгруппы, значит, все валентные электроны расположены на внешнем (третьем) уровне. Полная электронная формула: 1s22s22p63s23p3. Электронная формула валентных электронов:...3s23p3. До начала заполнения следующего уровня (в соответствии с порядком заполнения - это 4s) остается 3 электрона: 3s23p3 + 3е ® 3s23p6; ближайшая устойчивая конфигурация при ионизации атома также отстоит на 3 электрона: 3s23p3-3е ®3s23p0. Следовательно, фосфор может быть и окислителем, и восстановителем. Наличие пяти электронов в наружном слое атома указывает, что это неметалл. Высшая положительная степень окисления равна пяти. Формула высшего оксида - Р2О5.
Рис. 2.2. Электроотрицательности элементов (по Полингу) Пример 4. Вывести формулу валентных электронов и графическую электронную формулу элемента, расположенного в 4-м периоде, 5-й группе, побочной подгруппе. Какой это элемент? Решение. Элемент расположен в четвертом периоде, следовательно, электроны распределены по четырем квантовым уровням (n = 4). В атоме данного элемента имеется 5 валентных электронов (5 группа). Валентные электроны заполняют внешний и предвнешний квантовый уровень (т.к. побочная подгруппа). Таким образом, электронная формула валентных электронов:...4s23d3; графическая формула: Элемент - ванадий (d- элемент). Пример 5. Исходя из положения металла в периодической системе, объясните, какой из двух гидроксидов является более сильным основанием: Mg(OH)2 или Ва(OH)2; Cd(OH)2 или Sr(OH)2? Решение. Ва и Мg являются элементами одной группы и имеют схожее электронное строение: Ва...6s2, Mg...3s2. Различие в том, что валентные электроны Mg расположены на третьем квантовом уровне, а Ва - на шестом. Поэтому у Ва сильнее выражены металлические свойства, чем у Mg (энергия ионизации уменьшается сверху вниз, атомный радиус увеличивается от Mg к Ва, связь электронов с ядром ослабевает, атом Ва легче отдает электроны, металлические свойства усиливаются). Следовательно, Ва(OH)2 - более сильное основание, чем Mg(OH)2. Cd и Sr являются элементами одного периода (5-го) и одной группы (II). Но Cd - элемент побочной подгруппы, а Sr - главной. Электронная формула атомов: 38Sr...4s24p65s2 48Cd...4s24p64d105s2. Общим у этих элементов является наличие на внешнем уровне 2-х электронов. Но у Sr перед ними находится восьмиэлектронная оболочка, а у Cd - восемнадцатиэлектронная. Атомный радиус Sr больше, чем у Cd, а следовательно, энергия ионизации меньше, т.е. атом Sr легче отдает два электрона, чем атом Cd, металлические свойства у Sr выражены сильнее. Таким образом, Sr(OH)2 - более сильное основание, чем Cd(OH)2.
|