Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Несобственные интегралы от неограниченных функций.
Такие несобственные интегралы называют несобственными интегралами второго рода. Несобственные интегралы второго рода коварно «шифруются» под обычный определенный интеграл и выглядят точно так же: . Но, в отличие от определенного интеграла, подынтегральная функция терпит разрыв второго рода: 1) в точке , 2) или в точке , 3) или в обеих точках сразу, 4) или даже на отрезке интегрирования. Определение 2. Пусть определена на , причем неограниченна в окрестности особой точки , но она ограничена и интегрируема на любом отрезке . Тогда если существует предел , то он называется несобственным интегралом и обозначается . Если предела нет или он равен бесконечности, то интеграл называется расходящимся. Аналогично определяется интеграл от функции, неограниченной на верхнем пределе интегрирования: . Наконец, если неограниченна в окрестности особой точки , то . Пример 3. Исследовать на сходимость интеграл . Решение. . При имеем . Таким образом, сходится при и расходится при .
|