Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Несобственные интегралы от неограниченных функций.






Такие несобственные интегралы называют несобственными интегралами второго рода. Несобственные интегралы второго рода коварно «шифруются» под обычный определенный интеграл и выглядят точно так же: . Но, в отличие от определенного интеграла, подынтегральная функция терпит разрыв второго рода:

1) в точке , 2) или в точке ,

3) или в обеих точках сразу, 4) или даже на отрезке интегрирования.

Определение 2. Пусть определена на , причем неограниченна в окрестности особой точки , но она ограничена и интегрируема на любом отрезке . Тогда если существует предел , то он называется несобственным интегралом и обозначается .

Если предела нет или он равен бесконечности, то интеграл называется расходящимся.

Аналогично определяется интеграл от функции, неограниченной на верхнем пределе интегрирования: . Наконец, если неограниченна в окрестности особой точки , то

.

Пример 3. Исследовать на сходимость интеграл .

Решение. . При имеем .

Таким образом, сходится при и расходится при .

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал