![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Основные законы электромеханического преобразования энергии (ЭМ)Стр 1 из 47Следующая ⇒
Электрические машины Как правило, под законами электромеханики подразумевают следующие законы электродинамики, необходимые для анализа процессов и проектирования электромеханических преобразователей[12]. 1. Закон электромагнитной индукции Фарадея: где 2. Закон полного тока для магнитной цепи (1-ое уравнение Максвелла в интегральной форме): где 3. Закон электромагнитных сил (закон Ампера). Профессор МЭИ Копылов И. П. сформулировал три общих закона электромеханики[13]: 1-й закон: Электромеханическое преобразование энергии не может осуществляться без потерь, его КПД всегда меньше 100 %. 2-ой закон: Все электрические машины обратимы, одна и та же машина может работать как в режиме двигателя так и в режиме генератора. 3-ий закон: Электромеханическое преобразование энергии осуществляется неподвижными друг относительно друга полями. Ротор может вращаться с той же скоростью, что и поле (в синхронных машинах), или с другой скоростью (в асинхронных машинах), однако поля статора и ротора в установившемся режиме неподвижны относительно друг друга. 2)основные законы, лежащие в основе теории электрических машин
1.Основное уравнение электрической машины[14] — уравнение, связывающее между собой величины диаметра ротора и длины ротора с мощностью двигателя и числом оборотов в минуту: где 2.Уравнения равновесия напряжений обмоток электрической машины — уравнения, составленные для цепей обмоток на основании второго закона Кирхгофа Для асинхронной машины с короткозамкнутым ротором уравнения равновесия напряжений имеют вид[15]: где 3.Уравнение электромагнитного момента Уравнение электромагнитного момента асинхронной машины имеет вид[16]: где Уравнение электромагнитного момента синхронной машины[15]: где Для получения в машине постоянного тока номинальных данных в ней необходимо наличие магнитного потока Ф. Требуемая величина магнитного потока может быть определена из формулы 3) расчет магнитной цепи машины постоянного тока Магнитный поток в машинах постоянного тока создается под действием
Рис. 1 — Магнитная цепь пары полюсов четырехполюсной машины магнитодвижущей силы (МДС) обмоток возбуждения главных полюсов. Магнитный поток замыкается в машине между разноименными полюсами по определенному пути, который называется магнитной цепью машины.На рисунке 1.25 показана магнитная цепь пары полюсов четырехполюсной машины. Магнитная цепь машины обычно симметрична и имеет пять характерных однородных участков: главные полюса hп, воздушный зазор δ, зубцы якоря hz, сердечник якоря lя и станину lc машины. Поток, создаваемый каждым из полюсов,, делится относительно продольной оси полюса на две части, образующие вместе с соседними полюсами два одинаковых магнитных контура. Число таких контуров равно числу полюсов. Расчет магнитной цепи машины постоянного тока заключается в определении МДС, необходимой для создания под полюсами машины основного магнитного потока требуемой величины. Расчет ведут обычно на одну пару полюсов ввиду симметричности машины. Магнитную цепь можно рассчитать на основе закона полного тока для средней магнитной линии где
Предположив, что на протяжении каждого однородного участка Н постоянна, заменяем интеграл суммой где Hk– напряженность магнитного поля в каждом однородном участке; lk – средняя длина однородного участка; F0 – полная МДС пары полюсов, действующая в контуре цепи. Таким образом, общую МДС, действующую в контуре, можно представить суммой МДС, необходимых для проведения магнитного потока на заданных участках Коэффициент Kδ учитывает возрастание среднего воздушного зазора, называется коэффициентом воздушного зазора (коэффициентом Картера) и равен 1, 1÷ 1, 5. Величину напряженности поля в K–ом участке можно определить по формуле где Bk – индукция магнитного поля в участке; μ k – магнитная проницаемость участка. Для участков из ферромагнитных материалов Нk находится по кривым намагничивания В = f (H), так как для них μ = var. Индукцию Bk определяют по величине потока Фk и сечению участка Sk Подставив найденные значения Hk и lk в формулу общей МДС получим полную МДС пары полюсов.Расчетное значение МДС возбуждения зависит от потока Ф, который необходимо создать в машине. Задаваясь различными значениями основного потока, например 0, 5Ф, 0, 75Ф, 1, 0Ф, 1, 25Ф можно рассчитать соответствующие им МДС обмотки возбуждения и построить графически зависимость Ф = f (Fo). Эта зависимость (рис.2) носит название характеристики намагничивания машины. Степень насыщения магнитной системы машины характеризуется коэффициентом насыщения, который находится расчетным путем или из кривой намагничивания Коэффициент насыщения для различных машин находится в пределах 1, 25÷ 1, 75. Характеристика намагничивания, выраженная в другом масштабе, представляет собой характеристику холостого хода машины Eo= f (Iв), т.е. завиcимость ЭДС от тока возбуждения при постоянной частоте вращения n = const. 4. Устройство и принцип работы машины постоянного тока
По конструктивному выполнению машина постоянного тока (рис. 8.2) подобна обращенной синхронной машине, у которой обмотка якоря расположена на роторе, а обмотка возбуждения — на статоре. Основное отличие заключается в том, что машина постоянного тока имеет на якоре коллектор, а на статоре кроме главных полюсов с обмоткой возбуждения — добавочные полюсы, которые служат для уменьшения искрения под щетками. Статор. На статоре расположены главные полюсы с катушками обмотки возбуждения и добавочные полюсы (на рис. 8.2 не показаны) с соответствующими катушками. Полюсы крепят болтами к стальному корпусу, который является частью магнитной цепи машины. Главные полюсы (рис. 8.3) выполняют шихтованными (из стальных штампованных листов), а добавочные — массивными или также шихтованными. По станине и полюсам замыкается постоянный магнитный поток, поэтому выполнение полюсов массивными или из листов определяется в основном удобствами технологии. Стальные листы спрессовывают под давлением и скрепляют заклепками и нажимными щеками, установленными по краям каждого полюса. Шихтованными должны быть только наконечники главных полюсов, так как при вращении зубчатого якоря из-за пульсации магнитного потока в воздушном зазоре в них возникают вихревые токи и потери мощности. Однако по условиям технологии обычно выполняют шихтованным весь полюс. Полюсы крепят к станине болтами; резьбу для болтов нарезают непосредственно в шихтованном сердечнике полюса (рис. 8.3, а) либо в массивных стальных стержнях, которые вставляют в выштампованные отверстия в полюсах (рис. 8.3, 6).
Катушки главных и добавочных полюсов изготовляют из изолированного медного провода круглого или прямоугольного сечения. Катушки машин малой мощности выполняют из тонкой проволоки; последовательные катушки обмоток возбуждения и добавочных полюсов — из полосовой меди (рис. 8.4). Расположенную на полюсе обмотку иногда разбивают на несколько катушек (секций) для лучшего ее охлаждения. При секционном выполнении катушек между отдельными секциями устанавливают дистанционные шайбы из изоляционного материала, посредством которых образуются вентиляционные каналы. Якорь. Сердечник якоря, так же как в синхронной машине, собирают из изолированных листов электротехнической стали (рис. 8.5), Обмотку якоря изготовляют из провода круглого или прямоугольного сечения; обычно она состоит из отдельных, заранее намотанных, якорных катушек (рис. 8.6), которые обматывают изоляционными лентами и укладывают в пазы
сердечника якоря. Обмотку выполняют двухслойной; в каждом пазу укладывают две стороны различных якорных катушек — одну поверх другой. Каждая якорная катушка включает в себя несколько секций, концы которых припаивают к соответствующим коллекторным пластинам; секции могут быть одно- и многовитковыми. Коллектор. Обычно коллектор выполняют в виде цилиндра (рис. 8.7), собранного из клинообразных пластин твердотянутой меди; между пластинами располагают изоляционные прокладки из слюды или миканита. Узкие края коллекторных пластин имеют форму ласточкина хвоста; после сборки коллектора их зажимают между корпусом и нажимным фланцем (рис. 8.7, а) и изолируют манжетами из миканита. Секции обмотки якоря впаивают в прорези, имеющиеся в выступающей части коллекторных пластин.
В машинах малой и средней мощности широко применяют коллекторы, в которых медные пластины и миканитовые прокладки запрессованы в пластмассу (рис. 8.7, б). Поверхность собранного коллектора обтачивают на токарном станке и тщательно шлифуют. Чтобы миканитовые прокладки при срабатывании коллектора не выступали над пластинами и не вызывали вибрации щеток, их профрезеровывают на 0, 8—1, 5 мм ниже поверхности коллектора. Щеточный аппарат. По цилиндрической части коллектора скользят щетки, установленные в щеткодержателях. Щетки представляют собой прямоугольные бруски, изготовленные путем прессовки и термической обработки из порошков графита, кокса и других компонентов. Они предназначены для соединения коллектора с внешней цепью и прижимаются к поверхности коллектора пружинами (рис. 8.8, а). При вращении якоря щетки сохраняют неизменное положение относительно полюсов машины. Щеткодержатели укрепляют на щеточных пальцах и изолируют от них. Щеточные пальцы, в свою очередь, крепят либо к подшипниковому щиту, либо к траверсе, которая позволяет при необходимости поворачивать всю систему щеток относительно полюсов машины. В машинах малой мощности часто применяют трубчатые щеткодержатели (рис. 8.8, б), устанавливаемые непосредственно в подшипниковом щите.
В зависимости от состава, способа изготовления и физических свойств все щетки (рис. 8.9) делят на шесть основных групп: угольно-графитные, графитные, электрографитированные, медно-графитные, бронзо-графитные и серебряно-графитные. Для каждой машины следует применять щетки только установленной марки, которая выбирается заводом-изготовителем, исходя из условий работы машины.
5)Класификация машин постоянного тока по способу возбуждения. Для работы генератора необходимо наличие в нем магнитного поля. В зависимости от способа создания магнитного поля все генераторы постоянного тока (ГПТ) делят на: 1 - генераторы с независимым возбуждением: - электромагнитные, где поле создается специальной обмоткой, - магнитоэлектрические, где поле создается с помощью постоянных магнитов;
2 - генераторы с самовозбуждением: - параллельного возбуждения, - последовательного возбуждения, - смешанного возбуждения. Свойства генераторов анализируют с помощью характеристик, устанавливающих зависимости между основными величинами, определяющими работу генератора. Таковыми являются: - напряжение на зажимах, U, B; - ток нагрузки, I, A; - ток возбуждения, Iв, А; - полезная электрическая мощность, Р, Вт; - частота вращения якоря n, мин. Номинальные значения этих величин входят в паспортные данные всех генераторов постоянного тока. Можно указать и ряд дополнительных величин, например, число пар полюсов Р, сопротивления обмоток Rя, Rш, Rc и т.п. Основную группу характеристик снимают при неизменной частоте вращения якоря. Основными характеристиками ГПТ являются: 1. Характеристика холостого хода Uo = f(Iв); I = 0; (Uo - напряжение холостого хода генератора). 2. Внешняя характеристика U = f(I); Rв = 0; (Rв - сопротивление реостата в цепи возбуждения). 3. Регулировочная характеристика Iв = f(I); U = Uном; (Uном - номинальное напряжение генератора). 6) Рабочие характеристики двигателей постоянного тока
7) способы пуска и регулирования частоты вращения асинхронных двигателей На практике замечено, что ток, потребляемый обмоткой статора в первый момент пуска двигателя, очень большой. В ряде случаев он превышает номинальный ток в 6 - 10 раз. Такой нагрузки может не выдержать не только питающая сеть, но и сама обмотка статора. Поэтому для пуска крупных асинхронных двигателей применяют специальные устройства, снижающие пусковой ток. На рис. 5.13.1. показаны схемы пуска мощных двигателей с помощью реакторов и автотрансформатора.
Принцип ограничения тока заключается в том, что к статорной обмотке двигателя на период пуска подводится пониженное напряжение. После разгона его дополнительные устройства от двигателя отключаются. Иногда для снижения напряжения, подаваемого в обмотки статора, изменяют схему переключения обмоток. Например, асинхронный двигатель нормально работает по схеме " треугольник". Если на период пуска его обмотки включить " звездой", то на каждую фазу придется напряжение в Двигатели с фазным ротором пускаются в работу с помощью дополнительных сопротивлений. Вводя дополнительные сопротивления в цепь ротора, добиваются ограничения пускового тока. Регулирование частоты вращения асинхронного двигателя определяется формулой:
Здесь возможны три различных способа реализации: Первый заключается в изменении частоты тока f, подаваемого в обмотки двигателя. Этот способ позволяет осуществлять плавное регулирование частоты вращения двигателя. Регуляторы частоты тока пока еще очень дороги, поэтому они мало применяются. Второй способ связан с изменением пар полюсов p на статоре. Укладывая на статоре несколько обмоток, рассчитанных на различные числа пар полюсов (р=1, 2, 3, 4), можно обеспечить различные частоты вращения магнитного поля (соответственно: 3000, 1500, 1000, 750 об/мин). Подключение к сети необходимой обмотки производится специальным переключателем. Этот способ регулирования ступенчатый, но в ряде металлообрабатывающих станков он нашел самое широкое применение (например, для привода продольно-строгального станка при рабочем и обратном ходе). Третий способ регулирования частоты вращения возможен лишь для двигателей с фазным ротором. Здесь изменение скольжения S достигается введением в цепь ротора регулировочных сопротивлений. Такие схемы широко используются на грузоподъемных кранах. К категории регулирования вращения вала двигателя относится так называемое реверсирование, т.е. изменение направления вращения на обратное. Осуществляется оно путем изменения порядка чередования фаз обмотки статора. На рис. 5.13.2. показана схема изменения направления вращения вала двигателя. Торможение асинхронного двигателя может быть механическим и электрическим. К механическим относятся торможения муфтами, электромагнитными лентами, колодками и т.д. Иногда применяют электродинамическое торможение, когда после отключения двигателя от сети переменного тока в его обмотки подается постоянный ток. В этом случае постоянное магнитное поле заметно сокращает выбег ротора. Чаще используется торможение " противовыключением". После отключения двигателя от сети его кратковременно включают на вращение в обратную сторону. Как только оставшаяся частота вращения ротора n2 станет равной нулю, двигатель отключается от сети.
8) устройство и принцип работы трансформатора Трансформатор – статический электромагнитный аппарат для преобразования переменного тока одного напряжения в переменный ток другого напряжения, той же частоты. Трансформаторы применяют в электрических цепях при передаче и распределении электрической энергии, а также в сварочных, нагревательных, выпрямительных электроустановках и многом другом. Трансформаторы различают по числу фаз, числу обмоток, способу охлаждения. В основном используются силовые трансформаторы, предназначенные для повышения или понижения напряжения в электрических цепях. Схема однофазного двухобмоточного трансформатора представлена ниже. На схеме изображены основные части: ферромагнитный сердечник, две обмотки на сердечнике. Первая обмотка и все величины которые к ней относятся (i1-ток, u1-напряжение, n1-число витков, Ф1 – магнитный поток) называют первичными, вторую обмотку и соответствующие величины - вторичными. Первичную обмотку включают в сеть с переменным напряжением, её намагничивающая сила i1n1 создает в магнитопроводе переменный магнитный поток Ф, который сцеплен с обеими обмотками и в них индуцирует ЭДС e1= -n1 dФ/dt, e2= -n2dФ/dt. При синусоидальном изменении магнитного потока Ф = Фm sinω t, ЭДС равно e = Em sin (ω t-π /2). Для того чтобы посчитать действующее значение ЭДС нужно воспользоваться формулой E=4.44 f n Фm, где f- циклическая частота, n – количество витков, Фm – амплитуда магнитного потока. Причем если вы хотите посчитать величину ЭДС в какой либо из обмоток, нужно вместо n подставить число витков в данной обмотке. Из приведенных выше формул можно сделать вывод о том, что ЭДС отстает от магнитного потока на четверть периода и отношение ЭДС в обмотках трансформатора равно отношению чисел витков E1/E2=n1/n2. Если вторая обмотка не находится под нагрузкой, значит трансформатор находится в режиме холостого хода. В этом случае i2 = 0, а u2=E2, ток i1 мал и мало падение напряжения в первичной обмотке, поэтому u1≈ E1 и отношение ЭДС можно заменить отношением напряжений u1/u2 = n1/n2 = E1/E2 = k. Из этого можно сделать вывод, что вторичное напряжение может быть меньше или больше первичного, в зависимости от отношения чисел витков обмоток. Отношение первичного напряжения ко вторичному при холостом ходе трансформатора называется коэффициентом трансформации k. Как только вторичная обмотка подключается к нагрузке, в цепи возникает ток i2, то есть совершается передача энергии от трансформатора, который получает ее из сети, к нагрузке. Передача энергии в самом трансформаторе происходит благодаря магнитному потоку Ф. Обычно мощность на выходе и мощность на входе приблизительно равны, так как трансформаторы являются электрическими машинами с довольно высоким КПД, но если требуется произвести более точный расчет, то КПД находиться как отношение активной мощности на выходе к активной мощности на входе η = P2/P1. Магнитопровод трансформатора представляет собой закрытый сердечник собранный из листов электротехнической стали толщиной 0, 5 или 0, 35мм. Перед сборкой листы с обеих сторон изолируют лаком. По типу конструкции различают стержневой (Г-образный) и броневой (Ш-образный) магнитопроводы. Рассмотрим их структуру. Стержневой трансформатор состоит из двух стержней, на которых находятся обмотки и ярма, которое соединяет стержни, собственно, поэтому он и получил свое название. Трансформаторы этого типа применяются значительно чаще, чем броневые трансформаторы. Броневой трансформатор представляет собой ярмо внутри которого заключается стержень с обмоткой. Ярмо как бы защищает стержень, поэтому трансформатор называется броневым. Обмотка Конструкция обмоток, их изоляция и способы крепления на стержнях зависят от мощности трансформатора. Для их изготовления применяют медные провода круглого и прямоугольного сечения, изолированные хлопчатобумажной пряжей или кабельной бумагой. Обмотки должны быть прочными, эластичными, иметь малые потери энергии и быть простыми и недорогими в изготовлении.
Охлаждение В обмотке и сердечнике трансформатора наблюдаются потери энергии, в результате которых выделяется тепло. В связи с этим трансформатору требуется охлаждение. Некоторые маломощные трансформаторы отдают свое тепло в окружающую среду, при этом температура установившегося режима не влияет на работу трансформатора. Такие трансформаторы называют “сухими”, т.е. с естественным воздушным охлаждением. Но при средних и больших мощностях, воздушное охлаждение не справляется, вместо него применяют жидкостное, а точнее масляное. В таких трансформаторах обмотка и магнитопровод помещены в бак с трансформаторным маслом, которое усиливает электрическую изоляцию обмоток от магнитопровода и одновременно служит для их охлаждения. Масло принимает теплоту от обмоток и магнитопровода и отдает ее стенкам бака, с которых тепло рассеивается в окружающую среду. При этом слои масла имеющие разницу в температуре циркулируют, что улучшает теплообмен. Трансформаторам с мощностью до 20-30 кВА хватает охлаждения бака с гладкими стенками, но при больших мощностях устанавливаются баки с гофрированными стенками. Также нужно учитывать что при нагреве масло имеет свойство увеличиваться в объеме, поэтому в высокомощных трансформаторах устанавливают резервные баки и выхлопные трубы (в случае если масло закипит, появятся пары которым нужен выход). В трансформаторах меньшей мощности ограничиваются тем, что масло не заливают до самой крышки.
9) Схема замещения однофазного двухобмоточного трансформатора
|