Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Решение. 1.Для расчета параметров уравнения линейной регрессии строим расчетную таблицу D.2.






1. Для расчета параметров уравнения линейной регрессии строим расчетную таблицу D.2.

Таблица D.2

 
              -16 12, 0
              -4 2, 7
              -23 17, 2
                2, 6
                1, 9
                10, 8
                0, 0
                0, 0
                5, 3
                3, 1
                7, 5
              -10 5, 8
Итого               68, 9
Среднее значение 85, 6 155, 8 13484, 0 7492, 3 24531, 4 5, 7
12, 84 16, 05
164, 94 257, 76

;

.

Получено уравнение регрессии: .

С увеличением среднедушевого прожиточного минимума на 1 руб. среднедневная заработная плата возрастает в среднем на 0, 89 руб.

2. Тесноту линейной связи оценит коэффициент корреляции:

; .

Это означает, что 51% вариации заработной платы () объясняется вариацией фактора – среднедушевого прожиточного минимума.

Качество модели определяет средняя ошибка аппроксимации:

.

Качество построенной модели оценивается как хорошее, так как не превышает 8-10%.

3. Оценку значимости уравнения регрессии в целом проведем с помощью -критерия Фишера. Фактическое значение -критерия:

.

Табличное значение критерия при пятипроцентном уровне значимости и степенях свободы и составляет . Так как , то уравнение регрессии признается статистически значимым.

Оценку статистической значимости параметров регрессии проведем с помощью -статистики Стьюдента и путем расчета доверительного интервала каждого из показателей.

Табличное значение -критерия для числа степеней свободы и составит .

Определим случайные ошибки , , :

;

;

.

Тогда

;

;

.

Фактические значения -статистики превосходят табличное значение:

; ; ,

поэтому параметры , и не случайно отличаются от нуля, а статистически значимы.

Рассчитаем доверительные интервалы для параметров регрессии и . Для этого определим предельную ошибку для каждого показателя:

;

.

Доверительные интервалы

Анализ верхней и нижней границ доверительных интервалов приводит к выводу о том, что с вероятностью параметры и , находясь в указанных границах, не принимают нулевых значений, т.е. не являются статистически незначимыми и существенно отличны от нуля.

4. Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение прожиточного минимума составит: руб., тогда прогнозное значение заработной платы составит: руб.

5. Ошибка прогноза составит:

.

Предельная ошибка прогноза, которая в случаев не будет превышена, составит:

.

Доверительный интервал прогноза:

руб.;

руб.

Выполненный прогноз среднемесячной заработной платы является надежным () и находится в пределах от 131, 66 руб. до 190, 62 руб.

6. В заключение решения задачи построим на одном графике исходные данные и теоретическую прямую (рис. D.1):

Рис. D.1.

Варианты индивидуальных заданий

Задача 1. По территориям региона приводятся данные за 199X г. (см. таблицу своего варианта).

Требуется:

1. Построить линейное уравнение парной регрессии от .

2. Рассчитать линейный коэффициент парной корреляции и среднюю ошибку аппроксимации.

3. Оценить статистическую значимость параметров регрессии и корреляции с помощью -критерия Фишера и -критерия Стьюдента.

4. Выполнить прогноз заработной платы при прогнозном значении среднедушевого прожиточного минимума , составляющем 107% от среднего уровня.

5. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал.

6. На одном графике построить исходные данные и теоретическую прямую.

Вариант 1

Номер региона Среднедушевой прожиточный минимум в день одного трудоспособного, руб., Среднедневная заработная плата, руб.,
     
     
     
     
     
     
     
     
     
     
     
     

 

Вариант 2

Номер региона Среднедушевой прожиточный минимум в день одного трудоспособного, руб., Среднедневная заработная плата, руб.,
     
     
     
     
     
     
     
     
     
     
     
     

 

 

Вариант 3

Номер региона Среднедушевой прожиточный минимум в день одного трудоспособного, руб., Среднедневная заработная плата, руб.,
     
     
     
     
     
     
     
     
     
     
     
     

 

Вариант 4

Номер региона Среднедушевой прожиточный минимум в день одного трудоспособного, руб., Среднедневная заработная плата, руб.,
     
     
     
     
     
     
     
     
     
     
     
     

 

 

Вариант 5

Номер региона Среднедушевой прожиточный минимум в день одного трудоспособного, руб., Среднедневная заработная плата, руб.,
     
     
     
     
     
     
     
     
     
     
     
     

 

Вариант 6

Номер региона Среднедушевой прожиточный минимум в день одного трудоспособного, руб., Среднедневная заработная плата, руб.,
     
     
     
     
     
     
     
     
     
     
     
     

 

 

Вариант 7

Номер региона Среднедушевой прожиточный минимум в день одного трудоспособного, руб., Среднедневная заработная плата, руб.,
     
     
     
     
     
     
     
     
     
     
     
     

 

Вариант 8

Номер региона Среднедушевой прожиточный минимум в день одного трудоспособного, руб., Среднедневная заработная плата, руб.,
     
     
     
     
     
     
     
     
     
     
     
     

 

 

Вариант 9

Номер региона Среднедушевой прожиточный минимум в день одного трудоспособного, руб., Среднедневная заработная плата, руб.,
     
     
     
     
     
     
     
     
     
     
     
     

 

Вариант 10

Номер региона Среднедушевой прожиточный минимум в день одного трудоспособного, руб., Среднедневная заработная плата, руб.,
     
     
     
     
     
     
     
     
     
     
     
     

Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.013 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал