Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Метод Гаусса . структура общего решения.
Метод Гаусса – метод последовательного исключения переменных – заключается в том, что с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого или треугольного вида, из которой последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные. Пусть в системе (1) а11 0 (этого всегда можно добиться при помощи элементарных преобразований). В 1-м уравнении оставляем переменную х1, во всех остальных уравнениях исключаем ее, умножая 1-е уравнение на подходящие числа () и прибавляя к соответственно 2-му, 3-му, …, m-му уравнению системы. Далее, предполагая а22 0, аналогичным образом исключаем переменную х2 из всех уравнений, начиная с 3-го. И т.д. В результате последовательного исключения переменных получаем систему следующего вида: (14), где r≤ m. Число нуль в последних m-r уравнениях означает, что их левые части имеют вид . Если хотя бы одно из чисел не равно нулю, то соответствующее равенство противоречиво, и система (14) несовместна. Т.о. для любой совместной системы числа в системе (14) не равны нулю. Тогда последние m-r строчки являются тождествами и их можно отбросить при решении системы. Если r< m (число уравнений меньше числа неизвестных), то система (14) неопределенна и имеет ступенчатый вид. Если r=m, то система (14) определена и имеет треугольный вид. Переход системы (1) к равносильной ей системе (14) называется прямым ходом метода Гаусса, а нахождение переменных из системы (14) – обратным ходом. Преобразования Гаусса удобно проводить не с самими уравнениями, а с расширенной матрицей системы А*. Если система определена, то прямой и обратный ход метода Гаусса можно проводить одновременно: (А|В)~(Е|Х). Вместо столбца свободных членов получаем столбец неизвестных. Пример.
|