Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Индексный метод.






Индексы относительные величины, характеризующие соотно­шение явлений во времени, пространстве и по сравнению с планом. Раз­личают индексы индивидуальные, общие, агрегатные, факторные, пере­менного и фиксированного состава. Индексы применяют для характе­ристики динамики сложных совокупностей и измерения роли отдельных факторов в динамике обобщающих показателей хозяйственной деятель­ности. Метод построения общих индексов, позволяющих соотносить показатели по сложным совокупностям, составляет особый прием анали­за, именуемый индексным методом.

Изучая зависимость объема выпуска продукции (N) на предпри­ятии от изменений численности работающих (R) и производительности их труда (D), используют следующие индексы:

Взаимосвязь показателей представляется индексной системой IN = IR•1D, которая позволяет вычислить общий абсолютный прирост объема продукции ( Δ N) и прирост, вызванный изменениями факторов численности ( Δ NR) и производительности труда работающих (Δ ND):

МЕТОД ДИФФЕРЕНЦИРОВАННОГО ИСЧИСЛЕНИЯ основан на формуле полного дифференциала. Для функции от двух переменныхz = f (х, у) имеем полное приращение функции Δ z:

 

 

Таким образом, влияние фактора х на обобщающий показатель определяется по формуле

влияние фактора у:

Логарифмический метод. Этот метод дает логарифмически про­порциональное распределение прироста показателя по анализируемым факторам. Для факторной системы z = ху абсолютное изменение показа­теля z за счет факторов х и у определяется по формулам:

Интегральный метод дает наиболее общий подход к решению за­дач факторного анализа по разложению общего прироста показателя по факторным приращениям. В основе интегрального метода лежит интег­рал Эйлера—Лагранжа, устанавливающий связь между приращением функции и приращением факторных признаков. Для функции z = f (х, у) имеем следующие формулы расчета факторных влияний.

1. По методу дифференцирования:

Δ zX = f’ X • Δ х — влияние фактора х,

где f’ X — частная производная функции пох;

Δ zY = f’ Y Δ у — влияние фактора у,

где f’ Y частная производная функции по у.

2. По интегральному методу:

Δ zX = ∫ f‘ X d x — влияние фактора х;

Δ zY = ∫ f’ Y d y — влияние фактора у.

 

 

ИНТЕГРАЛЬНЫЙ МЕТОД. Данный метод является обобщением метода цепных подстановок и логарифмического метода. При некоторых предположениях они выводятся из интегрального метода как частные случаи.

Для применения интегрального метода требуются знание основ дифференциального исчисления, техники интегрирования и умение на­ходить производные различных функций. Вместе с тем в теории анализа хозяйственной деятельности для практических приложений разработа­ны конечные рабочие формулы интегрального метода для наиболее рас­пространенных видов факторных зависимостей, что делает этот метод доступным для каждого аналитика. Приведем некоторые из них.

1. Факторная модель типа и = ху:

Δ u = Δ uX + Δ uY;

Δ uX = y O Δ х + (Δ x · Δ y)/ 2;

Δ uY = x OΔ y + (Δ x · Δ y)/2;

Δ uY = Δ u - Δ uX.

2. Факторная модель типа u = xyz:

Δ u = Δ uX + Δ uY + Δ uY;

Δ uX = y O • z O Δ x + 1/2 y O • Δ x • Δ z + 1/2 z O Δ x • Δ y + 1/3Δ y • Δ z • Δ x;

Δ uY = x O • z O Δ y + 1/2 x O Δ y • Δ z + 1/2 z O Δ х • Δ y + 1/3Δ y • Δ z • Δ х;

Δ uZ = x O • y O • Δ z + 1/2 x O Δ z • Δ y + 1/2 y O • Δ z • Δ x + Δ y • Δ z • Δ x.

3. Факторная модель типа и = x/y:

Δ u = Δ uX + Δ uY;

Δ uX = Δ x/ Δ y • ln ׀ y 1/ y 0׀;

Δ uY = Δ u - Δ uX.

Интегральный метод дает точные оценки факторных влияний. Ре­зультаты расчетов не зависят от последовательности подстановок и по­следовательности расчета факторных влияний. Метод применим для всех видов непрерывно дифференцируемых функций; не требует пред­варительных знаний о том, какие факторы количественные, какие качест­венные. Вместе с тем данный метод не работает при наличии взаимосвя­зей между факторами, исследовании влияний не только от исходных факторов, но и функций от них.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал