Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Основные характеристики случайных процессов






Используют для описания свойств отдельных реализаций стационарных процессов

1) Средние значения и средние квадраты (μ х; σ х2); ψ 2х2х2

2) Плотности вероятности (Р(х)); Р(х)=

3) Ковариационные (корреляционные) функции (Rxx(τ));

4) Функции спектральной плотности (Gxx(f)); Gxx(f)=2/TE[|xT(f)|2]

μ x, σ x2 – характеризуют соответственно центр рассеяния и величину рассеивания данных: σ x2= , ψ x2= , σ x2x2x2.

Односторонняя Gxx=2Sxx(f)=4

Обратное преобразование: Rxx(τ)=

ψ x2 – одновременно характеризует и то, и другое.

Р(х) задает скорость изменения вероятности в зависимости от значения реализации.

Rxx(τ) задает меру зависимости значений стационарного процесса, сдвинутых относительно друг друга на определенный интервал времени.

Gxx(f) задает скорость изменения среднего квадрата в зависимости от частоты.

Р(х) применяют обычно помимо описания вероятностной структуры процесса для: 1) проверки нормальности; 2) выявления нелинейностей; 3) анализа экстремальных значений.

Rxx(τ) применяют для: 1) выявления периодичностей; 2) выделения сигналов из шумов; 3) измерения запаздываний; 4) локализации источников помех; 5) идентификации трактов и скоростей распространения сигналов.

Gxx(f) используют для: 1) определения свойств систем по наблюдениям входных и выходных процессов; 2) предсказания выходных процессов по выходным процессам и свойствам системы; 3) идентификации входов по выходам и свойствам системы; 4) задания динамических данных для тестовых программ; 5) идентификации источников энергии и шума; 6) оптимального линейного прогноза и фильтрации.

Для пар реализаций, принадлежащих разным стационарным процессам:

1)Совместные плотности вероятности;

2)Взаимные ковариационные (корреляционные) функции: Схуτ =Rxy(τ)-μ xμ y

3)Взаимные спектральные плотности;

4)Частные характеристики;

5)Функции когерентности

Сбор и обработка данных наблюдений (измерений) над случайными процессами

1. Сбор данных

Преобразователь – устройство, позволяющее количественно оценить изучаемый физический процесс путем преобразования его в аналоговый сигнал с взаимно однозначным соответствием между входными и выходными величинами (есть преобразователи неэлектрических величин в цифровые сигналы). В общем случае преобразование производится тремя операциями (рис. 4), но может выполняться и часть из них. Например, термопара – непосредственное преобразование разности температур в электрическое напряжение.

2. Регистрация данных

Модуляция используется двух видов (наиболее широко): частотная (ЧМ) и кодово – импульсная (КИМ).

Сущность ЧМ состоит в том, что частота несущего сигнала превращается в аналог амплитуды входного сигнала (рис. 4). При наличии на входе постоянной составляющей ЧМ – сигнал есть сигнал чистого тока, частота которого выше несущей на величину девитации.

 

 

ЧМ – сигнал КИМ – сигнал

а) б)

Рис.4. Основные методы модуляции: а) частотная модуляция (ЧМ); б)кодово – импульсная модуляция (КИМ).

При синусоидальном сигнале ЧМ – сигнал выглядит как синусоида переменной частоты.

При КИМ аналоговый сигнал на входе немедленно преобразуется в цифровой, а затем записывается (АЦП).

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал