Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Свойства средней арифметической






Средняя арифметическая обладает рядом мате­матических свойств, которые более полно раскрывают ее сущность и в некоторых случаях используются для упрощения ее расчетов.

В статистическом анализе применяются следующие свойства средней арифметической:

1. сумма отклонений отдельных значений признака от средней арифметической равна нулю:

(если частоты равны единице);

(если частоты различны).

Поэтому среднюю можно назвать центром распределения данных: значения ниже и выше средней величины взаимно уравновешиваются.

2. Произведение средней на сумму частот всегда равно сумме произведений вари­антов на частоты :

3. Если к каждому значению признака прибавить или отнять какое-либо произвольное число А, то новая средняя соответственно увеличится или уменьшится на то же число А:

.

4. Если каждое значение признака умножить или разделить на одно какое-либо число А, то и новая средняя соответственно увеличится или уменьшится во столько же раз:

5. Если все частоты (веса) разделить или умножить на одно и то же число А, то величина средней не изменится:

6. Сумма квадратов отклонений значений признака от средней меньше суммы квадратов отклонений от любой произвольной величины А:

<

=min.

7. средняя арифметическая суммы (разности) признаков равна сумме (разности) их средних арифметических.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал