Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Метод последовательных приближений
Неизохронность колебаний математического маятника связана с нелинейностью описывающего их уравнения (2.7). Общих методов решения нелинейных ДУ не существует, но есть несколько приближенных методов. Дальше мы рассмотрим один из таких методов - метод последовательных приближений. Сначала проделаем на примере маятника, а потом приведём к общему виду. Разложим нелинейное слагаемое sin(x) в уравнении (2.7) в ряд Тейлора, ограничиваясь вторым слагаемым
здесь a = -1/6. Зависимость периода колебаний от амплитуды (неизохронность колебаний) определяется коэффициентом a. Если a = 0 колебания чисто изохронные и период T = 2 p / w 0. Дальше воспользуемся теоремой из теории ДУ, что решение ДУ непрерывно зависит от параметра. Так как есть период, зависящий от w0 то можно сказать, что w0 - это параметр системы, который совпадает с частотой линейных колебаний. Введём параметр w - частота действующих (свободных) колебаний w = 2 p / T (a). Мы знаем, что при a = 0, она совпадает с w 0, и непрерывно зависит от a, т. е. мы можем представить её в виде ряда по степеням a. Исторически сложилось (да и проще) раскладывать w 2:
Считая нелинейность малой, мы ограничиваемся только первым слагаемым, содержащим a. Подставим (2.11) в (2.10), тогда, сохраняя только первые степени по a, получим
Решение x (t) уравнения (2.12) тоже непрерывно зависит от параметра a, причём при a = 0 . В силу непрерывности решения по a, можно записать, ограничиваясь только первой степенью a, что при a ¹ 0, . Подставим это решение в (2.12), пренебрегая степенями a со второй включительно , и, учитывая уравнение нулевого приближения для x 0 , получим окончательное уравнение первого приближения . В нашем случае, выбирая начальные условия в виде t = 0, x = a, , находим решение уравнения нулевого приближения . Уравнение первого приближения соответственно будет
У нас получилось линейное уравнение, в правой части которого стоят гармонические силы. Получилось, что на систему с собственной частотой w действуют два гармонических процесса с частотами w и 3 w. Так как потерь нет, то колебания совершаются с бесконечной амплитудой (на частоте w резонанс), поэтому, чтобы такого не было, необходимо положить , тогда уравнение первого приближения примет вид:
Из предыдущего соотношения находим, что . Тогда, подставив его в (2.11), получим , следовательно
Решение уравнения первого приближения будет иметь вид: , где С 1 и С 2 - произвольные постоянные. Тогда полное решение (2.10) в первом приближении запишется следующим образом: . Значения произвольных постоянных можно найти, требуя от этого решения, чтобы оно удовлетворяло тем же начальным условиям, т. е. , тогда окончательно с учётом формулы (2.15)
Из найденного соотношения видно, что колебания не изохронные и в них присутствуют высшие гармоники. Для математического маятника частота свободных колебаний убывает с ростом их амплитуды.
|