Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Методы получения эмульсий
Система из двух несмешивающихся жидкостей будет находиться в термодинамически устойчивом состоянии, если она будет состоять из двух сплошных слоев: верхнего (более легкая жидкость) и нижнего (более тяжелая жидкость). Как только мы начнем один из сплошных слоев дробить на капельки, чтобы получить эмульсию, будет возрастать межфазная поверхность, а следовательно, свободная поверхностная энергия и система станет термодинамически неустойчивой. Чем больше энергии будет затрачено на образование эмульсии, тем более неустойчивой она будет. Чтобы придать эмульсии относительную устойчивость, используют специальные вещества – стабилизаторы, называемые эмульгаторами. Практически все эмульсии (за исключением некоторых, образующихся самопроизвольно) получают только в присутствии эмульгаторов. Природа и механизм действия эмульгаторов будут рассмотрены в специальном разделе, а пока отметим, что эмульсии – это, как минимум, трехкомпонентные системы, состоящие из полярной жидкости, неполярной жидкости и эмульгатора. При этом одна из жидкостей находится в виде капель. Капли требуемых размеров могут быть получены двумя различными путями: конденсационным методом, выращивая их из малых центров каплеобразования, и диспергационным, дробя крупные капли. Наиболее распространенными как в лабораторной, так и в производственной практике являются диспергационные методы.
КОНДЕНСАЦИОННЫЕ МЕТОДЫ Конденсация из паров. Пар одной.жидкости (дисперсная фаза) инжектируется под поверхность другой жидкости (дисперсионная среда). В таких условиях пар становится пересыщенным и конденсируется в виде капель размером порядка 1 мкм. Эти капли стабилизируются в жидкости, содержащей соответствующий эмульгатор. На размер образующихся капель существенным образом влияют давление инжектируемого пара, диаметр впускного сопла, эмульгатор. Этим методом легко получают капли с размерами до 20 мкм. Эмульсии можно также получить, используя монодисперсный аэрозоль, полученный конденсационным методом. Для этого в слегка пересыщенный пар вводят мелкие (с размерами 10 6 см) частицы и позволяют центрам каплеобразования расти в течение некоторого времени, В результате образуется практически монодисперсный туман, при пропускании которого в дисперсионную среду получают монодисперсную эмульсию. Замена растворителя. Вещество, которое в будущей эмульсии должно находиться в виде капель, растворяют в «хорошем» растворителе с образованием истинного раствора. Если затем в полученный раствор ввести другой растворитель, который существенно «портят» первый, то растворенное вещество будет объединяться в капли, образуя эмульсию. Например, для бензола этанол является «хорошим» растворителем, в котором бензол находится в виде молекул. При добавлении к этому раствору воды происходит образование капелек бензола в водноспиртовой дисперсионной среде – возникает эмульсия I рода. Этот процесс легко наблюдается визуально – система из прозрачной становится мутной, так как капельки бензола, в отличие от молекул бензола, рассеивают и отражают свет.
ДИСПЕРГАЦИОННЫЕ МЕТОДЫ
Эти методы основаны на дроблении грубодисперсной системы, которая представляет собой два несмешивающихся жидких слоя. В зависимости от вида работы, которая совершается над грубодисперсной системой, диспергационные методы можно подразделить на три группы. Механическое диспергирование. Механическая работа, затрачиваемая для диспергирования, сводится к встряхиванию, смешению, гомогенизации, выдавливанию сплошных жидкостей, одна из которых содержит эмульгатор. 1. Метод прерывистого встряхивания (d капель 50 – 100 мкм) Образование эмульсии легко продемонстрировать, если пробирку, в которую налиты две жидкости, энергично встряхивать. Бриге (1920)установил, что прерывистое встряхивание с постоянными интервалами между толчками гораздо более эффективно, чем непрерывное. Например, для приготовления эмульсии 60% бензола в 1% – м растворе олеата натрия необходимо непрерывное встряхивание в течение 7 мин (за это время механическое устройство совершает 3000 толчков). Такая же эмульсия может быть приготовлена путем пяти встряхиваний вручную в течение 2 мин, если интервалы между двумя толчками составляют 20 – 30 с. При каждом толчке сплошная поверхность между двумя жидкостями становится волнистой и деформируется. Эта волнистость вначале приобретает вид пальцевидных отростков, которые затем разрушаются на мелкие капли. Этот процесс совершается в течение примерно 5 с. Если увеличивать интервалы между встряхиваниями, можно ускорить этот процесс. При ручном встряхивании капли будут иметь шаровую форму и размер 50–100 мкм. 2. Применение смесителей Промышленность выпускает смесители разнообразных конструкций: с мешалками пропеллерного и турбинного типов, коллоидные мельницы, гомогенизаторы. Гомогенизаторы – это устройства, в которых диспергирование жидкости достигается пропусканием ее через малые отверстия под высоким давлением. Эти устройства широко применяются для гомогенизации молока, в ходе которой средний диаметр капель молока понижается до 0, 2 мкм, и такое молоко не отстаивается. Эмульгирование ультразвуком. Образование эмульсий при интенсивном ультразвуковом воздействии впервые наблюдали Вуд и Лукис (1927), которые работали с кварцевым генератором большой мощности и частотой 200кГц. По мере развития ультразвуковой техники появился целый поток исследований в этой области. Ультразвуковая область частот лежит выше предела слышимости человека (более 15 кГц) и распространяется вплоть до 109 Гц. Для эмульгирования должен применяться ультразвук большой мощности, наиболее эффективной является область частот 20 – 50 кГц. Следует отметить, что эмульгирование ультразвуком весьма перспективно, хотя пока не находит широкого применения в промышленности. Эмульгирование электрическими методами. Метод электрического «дробления» известен давно, хотя стал привлекать внимание к себе лишь в последние годы. В 1958 г. Наваб и Мазон получили практически монодисперсную эмульсию в результате электрического диспергирования. Идея их метода состояла в следующем. Жидкость, которая должна быть диспергирована, помещалась в сосуд, заканчивающийся капиллярной воронкой. Последняя соединялась с положительным полюсом источника высокого напряжения. Сосуд был вставлен в большую круглодонную колбу, на дно которой был уложен заземленный металлический электрод. В колбу была налита жидкость, которая служила бы в эмульсии дисперсионной средой. Образующиеся при истечении из капилляра мелкие капли, попадая в жидкость, образовали эмульсии. Изменяя величину приложенного напряжения и регулируя зазор между капилляром и жидкостью, получали эмульсии с определенными размерами частиц, обычно в интервале 1 – 10 мкм. Для улучшения свойств эмульсий жидкость в колбе можно перемешивать и вводить эмульгатор. Таким путем получали устойчивые эмульсии типов М/В и В/М с концентрацией до 30%. Электрические методы диспергирования в настоящее время находятся в стадии развития и совершенствования. Они имеют ряд очевидных преимуществ, из которых главное – высокая монодисперсность получаемых эмульсий. Эти методы позволяют получать эмульсии обоих типов с меньшей концентрацией эмульгатора, чем с помощью других методов. Однако электрические методы имеют и недостатки. Так, если жидкости обладают заметной вязкостью, то эмульгирование затруднено или вообще невозможно.
САМОПРОИЗВОЛЬНОЕ ЭМУЛЬГИРОВАНИЕ
Самопроизвольным называется эмульгирование, которое происходит без затрат энергии извне. Оно обнаруживается, например, в двухкомпонентной (без эмульгатора) гетерогенной системе при температуре, близкой к критической температуре взаиморастворения[13] этих жидкостей. При этой температуре поверхностное натяжение становится крайне малым, менее 1 • 10 4 Дж/м2 – в этих условиях самопроизвольно образуется эмульсия. Она является термодинамически устойчивой, так как избыток свободной поверхностной энергии, возникающей при образовании капель, компенсируется энтропийным фактором – стремлением вещества к равномерному распределению в объеме системы. Каждая фаза этой эмульсии является насыщенным раствором одной жидкости в другой. В этой возможности самопроизвольного образования термодинамически устойчивых равновесных систем при условии очень низких значений поверхностного натяжения заключается одна из характерных особенностей эмульсий, отсутствующая у всех других дисперсных систем. По Ребиндеру, критическое значение min, необходимое для образования любой самопроизвольной эмульсии, включая критические эмульсии, определяется выражением: min < где k – постоянная Больцмана. При r – 10 6см и Т = 298 К величина minдолжна – быть меньше 0, 1 эрг/см2. Жидкий жир при поглощении организмом эмульгируется в кишечнике солями желчных кислот до состояния высокодисперсной жировой эмульсии и затем всасывается через стенки кишечника. Интересно, что система таурохолат (желчная соль) – моноглицеридолеиновая кислота при 6, 0 < рН < 8, 5 действительно обладает очень низким поверхностным натяжением (ниже 1 эрг/см2), при котором может происходить самопроизвольное эмульгирование. Эмульсии, которые образуются самопроизвольно и, следовательно, являются термодинамически устойчивыми, иногда называют лиофильньми эмульсиями. Следует отметить, что после открытия Гэдом в 1878 г. самопроизвольного эмульгирования, были найдены многочисленные системы жидкостей, которым свойственно это явление. Однако его механизм до сих пор остается дискуссионным.
|