Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Принцип относительности Галилея
Из формулы для ускорений следует, что если движущаяся система отсчета движется относительно первой без ускорения, то есть , то ускорение тела относительно обеих систем отсчета одинаково. Поскольку в Ньютоновской динамике из кинематических величин именно ускорение играет роль (см.второй закон Ньютона), то, если довольно естественно предположить, что силы зависят лишь от относительного положения и скоростей физических тел (а не их положения относительно абстрактного начала отсчета), окажется, что все уравнения механики запишутся одинаково в любой инерциальной системе отсчета — иначе говоря, законы механики не зависят от того, в какой из инерциальных систем отсчета мы их исследуем, не зависят от выбора в качестве рабочей какой-то конкретной из инерциальных систем отсчета. Также — поэтому — не зависит от такого выбора системы отсчета наблюдаемое движение тел (учитывая, конечно, начальные скорости). Это утверждение известно как принцип относительности Галилея, в отличие от Принципа относительности Эйнштейна Иным образом этот принцип формулируется (следуя Галилею) так: если в двух замкнутых лабораториях, одна из которых равномерно прямолинейно (и поступательно) движется относительно другой, провести одинаковый механический эксперимент, результат будет одинаковым. Требование (постулат) принципа относительности вместе с преобразованиями Галилея, представляющимися достаточно интуитивно очевидными, во многом следует форма и структура ньютоновской механики (и исторически также они оказали существенное влияние на ее формулировку). Говоря же несколько более формально, они налагают на структуру механики ограничения, достаточно существенно влияющие на ее возможные формулировки, исторически весьма сильно способствовавшие ее оформлению. Вопрос №21 Втоpой закон Ньютона в обычном виде не согласуется с теоpией относительности. В самом деле, допустим, что тело движется под действием постоянной силы. Тогда его скоpость меняется по закону pавноускоpенного движения, т.е. pастет линейно с течением вpемени. Поэтому спустя достаточное вpемя может оказаться больше скоpости света. Необходимо внести во втоpой закон Ньютона такие изменения, чтобы увеличение скоpости тела под действием любой силы затpуднялось по меpе ее пpиближения к скоpости света. Этого можно достигнуть, если изменить связь импульса матеpиальной точки со скоpостью. В механике Ньютона мы исходили из закона пpопоpциональности импульса и скоpости, т. е. полагали, что масса тела не зависит от скоpости его движения. В теоpии относительности закон, связывающий p и v, более сложный. Опиpаясь на тpебование пpинципа относительности (инваpиантность законов относительно пpеобpазований Лоpенца), можно доказать, что масса должна возpастать со скоpостью по закону:
| Вопрос № 8
Полем сил называют область пространства, в каждой точке которого на помещенную туда частицу действует сила, закономерно меняющаяся от точки к точке. Примером может служить поле силы тяжести Земли или поле сил сопротивления в потоке жидкости (газа). Если сила в каждой точке силового поля не зависит от времени, то такое поле называют стационарным. Ясно, что силовое поле, стационарное в одной системе отсчета, в другой системе может оказаться и нестационарным. В стационарном силовом поле сила зависит только от положения частицы.
Работа, которую совершают силы поля при перемещении частицы из точки 1 в точку 2, зависит, вообще говоря, от пути. Однако среди стационарных силовых полей имеются такие, в которых эта работа не зависит от пути между точками 1 и 2. Этот класс полей, обладая рядом важнейших свойств, занимает особое место в физике. Рассмотрим свойства таких полей.
Введем определение: стационарное силовое поле, в котором работа силы поля на пути между двумя любыми точками не зависит от формы пути, а зависит только от положения этих точек, называется потенциальным, а сами силы - консервативными.
Если это условие не выполняется, то силовое поле не является потенциальным, а силы поля называют неконсервативными. К числу таких сил принадлежит, например, сила трения, так как работа этой силы зависит в общем случае от пути.
потенциально, то, по условию С другой стороны, очевидно, что Поэтому
что и требовалось доказать. Наоборот, если работа сил поля на любом замкнутом пути равна нулю, то и работа этих сил на пути между произвольными точками 1 и 2 от формы пути не зависит, т. е. поле потенциально. Для доказательства выберем два произвольных пути: 1а2 и 1b2 (рис. 5.5). Составим из них замкнутый путь 1a2b1. Работа на этом замкнутом пути по условию равна нулю, т. е. Отсюда Но , поэтому Таким образом, равенство нулю работы сил поля на любом замкнутом пути есть необходимое и достаточное условие независимости работы от формы пути, и может считаться отличительным признаком любого потенциального поля сил. Рассмотрим важный случай поля центральных сил. Всякое силовое поле вызывается действием определенных тел. Сила, действующая на частицу А в таком поле, обусловлена взаимодействием этой частицы с данными телами. Если силы, зависят только от расстояния между взаимодействующими частицами и направлены по прямой, соединяющей эти частицы, от их называютцентральными. Такими примерами служат силы гравитационные, кулоновские и упругие. Центральную силу, действующую на частицу А со стороны частицы В, можно представить в общем виде:
где -функция, зависящая при данном характере взаимодействия только от r - расстояния между частицами; единичный вектор, задающий направление радиус-вектора частицы А относительно частицы В (рис.5.6). Докажем, что всякое стационарное поле центральных сил потенциально. Для этого найдем работу центральных сил в случае, когда силовое поле вызвано наличием одной неподвижной частицы B, а затем обобщим результат на произвольный случай. Элементарная работа силы (5.8) на перемещении есть Так как проекция вектора на вектор , или на соответствующий радиус-вектор (рис. 5.6), то Работа же этой силы на произвольном пути от точки 1 до точки 2
Полученное выражение зависит, очевидно, только от вида функции , т. е. от характера взаимодействия и от значений и - начального и конечного расстояний между частицами A и B. От формы пути оно никак не зависит. Это и означает, что данное силовое поле потенциально. Обобщим полученный результат на стационарное силовое поле, вызванное наличием совокупности неподвижных частиц, действующих на частицу A с силами .., каждая из которых является центральной. В этом случае работа результирующей силы при перемещении частицы A из одной точки в другую равна алгебраической сумме работ отдельных сил. А так как работа каждой из этих сил не зависит от формы пути, то и работа результирующей силы от нее также не зависит. Таким образом, действительно, любое стационарное поле центральных сил потенциально. Введем понятие потенциальной энергии частицы в поле. То, что работа сил потенциального поля зависит только от начального и конечного положений частицы, дает возможность ввести чрезвычайно важное понятие потенциальной энергии. Представим себе, что мы перемещаем частицу в потенциальном поле сил из разных точек P в фиксированную точку O. Так как работа сил поля не зависит от формы пути, то остается зависимость ее только от положения точки P (при фиксированной точке O). А это значит, что данная работа будет некоторой функцией радиус-вектора r точки P. Обозначив эту функцию , запишем
Функцию называют потенциальной энергией частицы в данном поле. проходящий через точку O. Тогда работа на пути 1O2 может быть представлена в виде
или с учетом (5.9)
Выражение, стоящее справа, есть убыль потенциальной энергии, т. е. разность значений потенциальной энергии частицы в начальной и конечной точках пути. Таким образом, работа сил поля на пути 1-2 равна убыли потенциальной энергии частицы в данном поле. Изменение какой-либо произвольной физической величины X можно характеризовать либо ее приращением, либо убылью. Приращением величины X называют разность конечного и начального значений этой величины: Приращение . Убылью величины X называют разность ее начального и конечного значений: Убыль , т. е. убыль величины X равна ее приращению, взятому с обратным знаком. Приращение и убыль - величины алгебраические: если , то приращение положительно, а убыль отрицательна, и наоборот. Очевидно, частице, находящейся в точке O поля, всегда можно приписать любое заранее выбранное значение потенциальной энергии. Это соответствует тому обстоятельству, что путем измерения работы может быть определена лишь разность потенциальных энергий в двух точках поля, но не ее абсолютное значение. Однако как только фиксирована потенциальная энергия в какой-либо точке, значения ее во всех остальных точках поля однозначно определяются формулой (5.10). Формула (5.10) дает возможность найти выражение для любого потенциального ноля сил. Для этого достаточно вычислить работу, совершаемую силами поля на любом пути между двумя точками, и представить ее в виде убыли некоторой функции, которая и есть потенциальная энергия . Именно так и было сделано при вычислении работы в полях упругой и гравитационной (кулоновской) сил, а также в однородном поле тяжести [см. формулы (5.3)- (5.5). Из этих формул сразу видно, что потенциальная энергия частицы в данных силовых нолях имеет следующий вид: 1) в поле упругой силы
2) в поле точечной массы (заряда)
где для гравитационного взаимодействия и для кулоновского взаимодействия; 3) в однородном поле сил тяжести
Еще раз подчеркнем, что потенциальная энергия - это функция, которая определяется с точностью до прибавления некоторой произвольной постоянной. Это обстоятельство, однако, совершенно несущественно, ибо во все формулы входит только разность значений в двух положениях частицы. Поэтому произвольная постоянная, одинаковая для всех точек поля, выпадает. В связи с этим ее обычно опускают, что и сделано в трех предыдущих выражениях. Отметим еще одно важное обстоятельство. Потенциальную энергию следует относить не к частице, а к системе взаимодействующих между собой частицы и тел, вызывающих силовое поле. При данном характере взаимодействия потенциальная энергия взаимодействия частицы с данными телами зависит только от положения частицы относительно этих тел. Определим связь потенциальной энергии и силы поля. Взаимодействие частицы с окружающими телами можно описывать двумя способами: с помощью сил или с помощью потенциальной энергии. В классической механике оба способа используют одинаково широко. Однако первый способ обладает несколько большей общностью, ибо он применим и к таким силам, для которых нельзя ввести потенциальную энергию (например, к силам трения). Второй же способ применим только в случае консервативных сил. Наша задача - установить связь между потенциальной энергией и силой поля, точнее, определить поле сил по заданной потенциальной энергии как функции положения частицы в поле. Ранее было показано, что при перемещении частицы из одной точки потенциального поля в другую работа, которую производят силы поля, может быть представлена как убыль потенциальной энергии частицы, т. е. Это относится и к элементарному перемещению или
Учитывая, что , где - элементарный путь, перепишем уравнение (5.14) в форме
где - это убыль потенциальной энергии в направлении перемещения . Отсюда
т. е. проекция силы поля - вектора - в данной точке на направление перемещения равна с обратным знаком производной потенциальной энергии по данному направлению. Символ -частной производной - подчеркивает, что производная берется по определенному направлению. Перемещение мы можем взять в любом направлении, в частности вдоль координатных осей х, у, z. Если перемещение , например, параллельно оси х, то его можно представить так: где орт оси приращение координаты. x. Тогда paбота силы на перемещении , параллельном оси x,
где проекция вектора на орт а не на перемещение , как в случае Подставив последнее выражение в уравнение (5.14), получим
где символ частной производной означает, что потенциальная энергия при дифференцировании должна рассматриваться как функция одного аргумента х, остальные же аргументы должны оставаться при этом постоянными. Ясно, что для проекций и уравнения будут аналогичны уравнению для . Итак, взяв с обратными знаками частные производные функции U по х, у и z, мы найдем проекции и вектора на орты . Отсюда легко найти и сам вектор: или
Величину, стоящую в скобках, называют градиентом скалярной функции U и обозначают или Мы будем пользоваться вторым, более удобным, обозначением, где значок " набла" означает символический векторный оператор
|