Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Системы линейных алгебраических уравнений






 

Общие понятия. Линейным (относительно неизвестных ) называют алгебраическое уравнение первой степени, т.е. уравнение вида , где – числа. Система линейных уравнений с неизвестными имеет вид

(1)

В общем случае число уравнений в системе не обязательно совпадает с числом неизвестных: может быть меньше, равно или больше числа .

Числа (вещественные или комплексные) называются коэффициентами системы (1); свободными членами; неизвестными.

Систему (1) можно записать в матричной форме:

, (2)

где , , .

Если , то система называется однородной, в противном случае она называется неоднородной. Матрицу называют матрицей системы (1). Расширенной матрицей системы (1) линейных уравнений называют матрицу , к которой добавлен (справа) столбец свободных членов . Такую матрицу будем обозначать в дальнейшем символом .

Определение. Упорядоченную совокупность чисел называется решением системы (1), если после замены неизвестных числами соответственно каждое из уравнений системы превращается в верное равенство.

Вообще говоря, система может либо вовсе не иметь решений, либо иметь единственное решение, либо иметь их несколько (в последнем случае, оказывается, система всегда имеет бесконечное множество решений).

Определение. Система линейных уравнений, не имеющая ни одного решения, называется несовместной. Система, обладающая хотя бы одним решением, называется совместной.

Относительно каждой системы линейных уравнений могут быть поставлены следующие вопросы:

1) Совместна заданная система или нет?

2) В случае, если система совместна, как определить, сколько она имеет решений – одно или несколько?

3) Как найти все решения системы?

Ответ на все эти вопросы дает теория систем линейных уравнений.

Правило Крамера. Ограничимся сначала рассмотрением систем, у которых число уравнений равно числу неизвестных (такие системы называют квадратными).

Пусть дана система линейных уравнений с неизвестными:

(3)

Определитель

,

составленный из коэффициентов при неизвестных, называется определителем системы (3).

Теорема. Если определитель квадратной системы (3) отличен от нуля, то эта система имеет единственное решение. Это решение может быть найдено по формулам

,

где – определитель, получаемый из определителя заменой -го столбца на столбец свободных членов.

Формулы для неизвестных носят название формул Крамера.

Метод Гаусса (метод последовательного исключения неизвестных) решения систем линейных уравнений. Под элементарными преобразованиями системы линейных уравнений понимаются следующие операции:

1) умножение какого-либо уравнения системы на число, отличное от нуля;

2) прибавление к одному уравнению другого уравнения;

3) перемена местами уравнений в системе.

Комбинируя элементарные преобразования первого и второго типов, мы можем к любому уравнению прибавить другое уравнение, умноженное на произвольное число.

Производя элементарные преобразования в системе, мы получаем новую систему. Очевидно, что каждому элементарному преобразованию системы соответствуют аналогичные преобразования над строками расширенной матрицы этой системы и, наоборот, каждому элементарному преобразованию строк расширенной матрицы соответствует некоторое элементарное преобразование в системе. Таким образом, элементарные преобразования в системе сводятся к соответствующим преобразованиям над строками ее расширенной матрицы.

Определение. Две системы линейных уравнений от одних и тех же неизвестных называются равносильными, если каждое решение одной из них является решением другой, и наоборот (или если обе системы несовместны).

Заметим, что число уравнений в равносильных системах может быть различным.

Теорема. При элементарных преобразованиях система линейных уравнений переходит в равносильную систему.

(Без доказательства)

Сущность метода Гаусса заключается в том, что с помощью элементарных преобразований система уравнений приводится к такому виду, чтобы матрица системы оказалась треугольной. Для упрощения изложения мы будем иметь дело не с самой системой (1), а с расширенной матрицей этой системы (производя при этом элементарные преобразования только над строками матрицы).

Критерий совместности системы линейных уравнений. Рассмотрим снова произвольную систему линейных уравнений с неизвестными, которую запишем, как и раньше, в матричной форме (2). Очевидно, что ранги матриц и связаны неравенством .

Вопрос о совместности системы (2) полностью решается следующей теоремой.

Теорема Кронекера-Капелли. Для того чтобы система линейных уравнений была совместна, необходимо и достаточно, чтобы ранг матрицы этой системы был равен рангу ее расширенной матрицы, т.е. чтобы .

Если совместность системы линейных уравнений установлена, то возникает вопрос о том, сколько она имеет решений. Ответ о числе решений системы линейных уравнений дает следующая теорема

Теорема (о числе решений). Пусть для системы линейных уравнений с неизвестными выполнено условие совместности, т.е. ранг матрицы системы равен рангу ее расширенной матрицы. Тогда, если ранг матрицы системы равен числу неизвестных (), то система имеет единственное решение. Если же ранг матрицы системы меньше числа неизвестных (), то система имеет бесконечное множество решений, а именно: некоторым неизвестным можно придавать произвольные значения, тогда оставшиеся неизвестных определятся уже единственным образом.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал