Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Объем куба и прямоугольного параллелепипеда.
Рассмотрим куб, принятый за единицу измерения объемов. Его ребро равно единице измерения отрезков. Разобьем каждое ребро этого куба на n равных частей, где n – произвольное целое число, и проведем через точки разбиения плоскости, перпендикулярные к этому ребру. Куб разобьется на n3 равных кубиков с ребром Объем куба с ребром Теорема: Объем прямоугольного параллелепипеда равен произведению трех его измерений:
где а – длина, b – ширина, h – высота прямоугольного параллелепипеда. Для доказательства воспользуемся принципом Кавальери. 1) Сначала найдем объем прямоугольного параллелепипеда со сторонами основания a, b и высотой 1. Расположим единичный куб и данный параллелепипед так, чтобы их основания находились в одной плоскости, а сами многогранники были расположены по одну сторону от этой плоскости. Тогда любая плоскость, параллельная плоскости оснований этих многогранников и пересекающая куб, пересекает также и прямоугольный параллелепипед, причем площади сечений, образованных при пересечении обоих многогранников, относятся как 1: (ab). Это означает, что объемы этих тел относятся как 1: (ab). Иными словами, если объем единичного куба равен 1, то объем рассматриваемого прямоугольного параллелепипеда равен V = ab. 2) Теперь найдем объем прямоугольного параллелепипеда с измерениями a, b, h. Расположим прямоугольный параллелепипед с измерениями a, b, 1 и прямоугольный параллелепипед с измерениями a, b, h так, чтобы грань со сторонами 1 и а и грань со сторонами h и a находились в одной плоскости, а сами параллелепипеды были расположены по одну сторону от этой плоскости. Тогда любая плоскость, параллельная плоскости оснований этих параллелепипедов и пересекающая первый из них, пересекает также и второй параллелепипед, причем площади сечений, образованных при пересечении обоих многогранников, относятся как (1× a): (ah) = 1: h. Это означает, что объемы этих тел относятся как 1: h. Таким образом, если объем первого параллелепипеда равен ab, то объем второго прямоугольного параллелепипеда равен V = abh. Следствия: 1.Объем прямоугольного параллелепипеда равен произведению площади основания на высоту:
2.Объем прямой призмы, основанием которой является прямоугольный треугольник, равен произведению площади основания на высоту. Для доказательства этого утверждения достроим прямую треугольную призму до прямоугольного параллелепипеда. Объем этого параллелепипеда равен
|