Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Тема 1.3. Численное интегрирование (9 часов)Стр 1 из 8Следующая ⇒
[7], с.86 …164
Квадратурные формулы Ньютона-Котеса. Квадратурные формулы Гаусса. Задачи оптимизации. Формулы Эйлера и Грегори. Формулы Ромберга. Стандартные программы численного интегрирования. Построение программ с автоматическим выбором шага интегрирования.
Тема 1. 4. Приближение функций (9 часов) [7], с.164 … 200
Наилучшие приближения в разных пространствах. Дискретное преобразование Фурье. Быстрое преобразование Фурье. Наилучшее равномерное приближение. Итерационный метод. Интерполяция и приближение сплайнами.
Тема 1.5. Многомерные задачи (8 часов) [7], с.201 … 250
Методы неопределенных коэффициентов, наименьших квадратов и регуляризации. Сведение многомерных задач к одномерным. Метод Монте-Карло. Выбор метода решения задачи.
Тема 1. 6. Численные методы алгебры (7 часов) [7], с.250 … 324
Методы последовательного исключения, ортогонализации и простой итерации. Оптимизация скорости сходимости итерационных процессов. Метод Зайделя и наискорейшего спуска. Метод Монте-Карло решения систем линейных уравнений. Проблема собственных значений.
Тема 1.7. Решение систем нелинейных уравнений и задач оптимизации (8 часов) [7], с.324 … 360
Простые итерации, метод Ньютона и метод спуска. Методы уменьшения размерности. Решение стационарных задач методом установления. Целевая функция.
Тема 1.8. Численные методы решения обыкновенных Дифференциальных уравнений (8 часов) [7], с.360 … 495
Решение задачи Коши: разложение в ряд и методы Рунге-Кутта. Контроль погрешности на шаге. Конечно-разностные методы. Метод неопределенных коэффициентов. Интегрирование систем уравнений. Краевые задачи. Функция Грина. Нелинейные краевые задачи. Метод прогонки.
Раздел 2. Теория функций комплексного переменного(70 часов) Тема 2.1. Комплексные числа и действия над ними (4 часа) [6], c. 10 … 15 Определение комплексного числа (к.ч.). Геометрическая интерпретация к.ч. Алгебраическая, тригонометрическая и показательная формы к.ч. Действия с к.ч. в различных формах.
Тема 2.2. Функции комплексного переменного (ФКП). Условия Коши-Римана (8 часов) [6], c.15 … 22 Определение ФКП. Предел и непрерывность. Производная и дифференциал. Необходимое и достаточное условие дифференцируемости. Правила дифференцирования. Регулярность. Гармонические функции.
Тема 2.3. Элементарные функции и конформные отображения (12 часов) [6], c.22 … 38 Линейная ФКП. Геометрический смысл производной. Дробно-линейная, показательная, логарифмическая, тригонометрические и гиперболические ФКП.
|