Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Интерференции света в тонких пленках
В природе часто можно наблюдать радужное окрашивание тонких пленок (масляные пленки на воде, мыльные пузыри, оксидные пленки на металлах), возникающее в результате интерференции света, отраженного двумя поверхностями пленки. Пусть на плоскопараллельную прозрачную пленку с показателем преломления n и толщиной dпод углом i (рис. 249) падает плоская монохроматическая волна (для простоты рассмотрим один луч). На поверхности пленки в точке Олуч разделится на два: частично отразится от верхней поверхности пленки, а частично преломится. Преломленный луч, дойдя до точки С, частично преломится в воздух (n0 = 1), а частично отразится и пойдет к точке В. Здесь он опять частично отразится (этот ход луча в дальнейшем из-за малой интенсивности не рассматриваем) и преломится, выходя в воздух под углом i. Вышедшие из пленки лучи 1 и 2когерентны, если оптическая разность их хода мала по сравнению с длиной когерентности падающей волны. Если на их пути поставить собирающую линзу, то они сойдутся в одной из точек Р фокальной плоскости линзы. В результате возникает интерференционная картина, которая определяется оптической разностью хода между интерферирующими лучами. Рис. 249
Оптическая разность хода, возникающая между двумя интерферирующими лучами от точки О до плоскости АВ, где показатель преломления окружающей пленку среды принят равным 1, а член ±l0/2 обусловлен потерей полуволны при отражении света от границы раздела. Если n > n0, то потеря полуволны произойдет в точке О и вышеупомянутый член будет иметь знак минус; если же n < n0, то потеря полуволны произойдет в точке С и l0/2 будет иметь знак плюс. Согласно рис. 249, ОС= СВ=d/cos г, ОА = OBsin I = 2d tgr sini.Учитывая для данного случая закон преломления sini = nsin r, получим С учетом потери полуволны для оптической разности хода получим
и минимум, если (см. (172.3)) (174.3) Интерференция, как известно, наблюдается, только если удвоенная толщина пластинки меньше длины когерентности падающей волны. Полосы равного наклона (интерференция от плоскопараллельной пластины). Из выражений (174.2) и (174.3) следует, что интерференционная картина в плоскопараллельных пластинках (пленках) определяется величинами l0, d, n и i. Для данных l0, d и nкаждому наклону iлучей соответствует своя интерференционная полоса. Интерференционные полосы, возникающие в результате наложения лучей, падающих на плоскопараллельную пластинку под одинаковыми углами, называются полосами равного наклона. на экране возникает система интерференционных полос. Каждая из полос возникает при отражении от мест пластинки, имеющих одинаковую толщину (в общем случае толщина пластинки может изменяться произвольно). Интерференционные полосы, возникающие в результате интерференции от мест одинаковой толщины, называются полосами равной толщины.
Так как верхняя и нижняя грани клина не параллельны между собой, то лучи 1¢ и 1² (2' и пересекаются вблизи пластинки, в изображенном на рис. 251 случае — над ней (при другой конфигурации клина они могут пересекаться и под пластинкой). Таким образом, полосы равной толщины локализованы вблизи поверхности клина. Бели свет падает на пластинку нормально, то полосы равной толщины локализуются на верхней поверхности клина.
|