Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Дифракция Фраунгофера на дифракционной решетке
Большое практическое значение имеет дифракция, наблюдаемая при прохождении света через одномерную дифракционную решетку — систему параллельных щелей равной ширины, лежащих в одной плоскости и разделенных равными по ширине непрозрачными промежутками. Рассматривая дифракцию Фраунгофера на щели, мы видели, что распределение интенсивности на экране определяется направлением дифрагированных лучей. Это означает, что перемещение щели параллельно самой себе влево или вправо не изменит дифракционной картины. Следовательно, если перейти от одной щели ко многим (к дифракционной решетке), то дифракционные картины, создаваемые каждой щелью в отдельности, будут одинаковыми. Дифракционная картина на решетке определяется как результат взаимной интерференции волн, идущих от всех щелей, т. е. в дифракционной решетке осуществляется многолучевая интерференция когерентных дифрагированных пучков света, идущих от всех щелей. Рассмотрим дифракционную решетку. На рис. 262 для наглядности показаны только две соседние щели MN и CD. Если ширина каждой щели равна а, а ширина непрозрачных участков между щелями b, то величина d = a + bназывается постоянной (периодом) дифракционной решетки.
Пусть плоская монохроматическая волна падает нормально к плоскости решетки. Так как щели находятся друг от друга на одинаковых расстояниях, то разности хода лучей, идущих от двух соседних щелей, будут для данного направления jодинаковы в пределах всей дифракционной решетки: Очевидно, что в тех направлениях, в которых ни одна из щелей не распространяет свет, он не будет распространяться и при двух щелях, т. е. прежние (главные) минимумы интенсивности будут наблюдаться в направлениях, определяемых условием (179.2): Кроме того, вследствие взаимной интерференции световых лучей, посылаемых двумя щелями, в некоторых направлениях они будут гасить друг друга, т. е. возникнут дополнительные минимумы. Очевидно, что эти дополнительные минимумы будут наблюдаться в тех направлениях, которым соответствует разность хода лучей l/2, З l/2, …, посылаемых, например, от крайних левых точек М и С обеих щелей. Таким образом, с учетом (180.1) условие дополнительных минимумов: Наоборот, действие одной щели будет усиливать действие другой, если (180.3) т. е. выражение (180.3) задает условие главных максимумов. Таким образом, полная дифракционная картина для двух щелей определяется из условий: т. е. между двумя главными максимумами располагается один дополнительный минимум. Аналогично можно показать, что между каждыми двумя главными максимумами при трех щелях располагается два дополнительных минимума, при четырех щелях — три и т. д. Если дифракционная решетка состоит из N щелей, то условием главных минимумов является условие (180.2), условием главных максимумов — условие (180.3), а условием дополнительных минимумов где т' может принимать все целочисленные значения, кроме 0, N, 2N ,.... т. е. кроме тех, при которых условие (180.4) переходит в (180.3). Следовательно, в случае N щелей между двумя главными максимумами располагается N— 1 дополнительных минимумов, разделенных вторичными максимумами, создающими весьма слабый фон. Разрешающей способностью (разрешающей силой) объектива называется величина где dy— наименьшее угловое расстояние между двумя точками, при котором они еще оптическим прибором разрешаются. Согласно критерию Рэлея, изображения двух одинаковых точек разрешимы, когда центральный максимум дифракционной картины для одной точки совпадает с первым минимумом дифракционной картины для другой (рис. 266). Из рисунка следует, что при выполнении критерия Рэлея угловое расстояние dyмежду точками должно быть равно j, т. е. с учетом (183.1) Следовательно, разрешающая способность объектива (183.2) т. е. зависит от его диаметра и длины волны света. Из формулы (183.2) видно, что для увеличения разрешающей способности оптических приборов нужно либо увеличить диаметр объектива, либо уменьшить длину волны. Поэтому для наблюдения более мелких деталей предмета используют ультрафиолетовое излучение, а полученное изображение в данном случае наблюдается с помощью флуоресцирующего экрана либо фиксируется на фотопластинке. Еще большую раз решающую способность можно было бы получить с помощью рентгеновского излучения, но оно обладает большой проникающей способностью и проходит через вещество не преломляясь; следовательно, в данном случае невозможно создать преломляющие линзы. Потоки электронов (при определенных энергиях) обладают примерно такой же длиной волны, как и рентгеновское излучение. Поэтому электронный микроскоп имеет очень высокую разрешающую способность (см. § 169). Разрешающей способностью спектрального прибора называют безразмерную величину (183.3) где dl — абсолютное значение минимальной разности длин волн двух соседних спектральных линий, при которой эти линии регистрируются раздельно. 2. Разрешающая способность дифракционной решетки. Пусть максимум m-го порядка для длины волны l2 наблюдается под углом j, т. e., согласно (180.3), dsinj = ml2. При переходе от максимума к соседнему минимуму разность хода меняется на l/N (см. (180.4)), где N — число щелей решетки. Следовательно, минимум l1 наблюдаемый под углом jmin, удовлетворяет условию dsinjmin = ml1 +l1/N. По критерию Рэлея, j = jmin, т.е. ml2 = ml1 +l1/N или l2/(l2 - l1) = mN. Так как l1 и l 2 близки между собой, т. е. l 2 - l1 = dl, то, согласно (183.3), Таким образом, разрешающая способность дифракционной решетки пропорциональна порядку mспектра и числу N щелей, т. е. при заданном числе щелей увеличивается при переходе к большим значениям порядка m интерференции. Современные дифракционные решетки обладают довольно высокой разрешающей способностью (до 2× 105). Одной из характеристик дифракционной решётки является угловая дисперсия. Предположим, что максимум какого-либо порядка наблюдается под углом φ для длины волны λ и под углом φ +Δ φ — для длины волны λ +Δ λ. Угловой дисперсией решётки называется отношение D=Δ φ /Δ λ. Выражение для D можно получить если продифференцировать формулу дифракционной решётки Таким образом, угловая дисперсия увеличивается с уменьшением периода решётки d и возрастанием порядка спектра k.
Голография (от греч. «полная запись») — особый способ записи и последующего восстановления волнового поля, основанный на регистрации интерференционной кар тины. Она обязана своим возникновением законам волновой оптики — законам интерференции и дифракции. Этот принципиально новый способ фиксирования и воспроизведения пространственного изображения предметов изобретен английским физиком Д. Табором (1900—1979) в 1947 г. (Нобелевская премия 1971 г.). Экспериментальное воплощение и дальнейшая разработка этого способа (Ю. Н. Денисюком в 1962 г. и американскими физиками Э. Лейтом и Ю. Упатниексом в 1963 г.) стали возможными после появления в 1960 г. источников света высокой степени когерентности — лазеров (см. § 233). Рассмотрим элементарные основы принципа голографии, т. е. регистрации и восстановления информации о предмете. Для регистрации и восстановления волны необходимо уметь регистрировать и восстанавливать амплитуду и фазу идущей от предмета волны. В самом деле, согласно формуле (144.2), учитывая, что I ~ А2, распределение интенсивности в интерференционной картине определяется как амплитудой интерферирующих волн, так и разностью их фаз. Поэтому для регистрации как фазовой, так и амплитудной информации кроме волны, идущей от предмета (так называемой предметной волны), используют еще когерентную с ней волну, идущую от источника света (так называемую опорную волну). Идея голографирования состоит в том, что фотографируется распределение интенсивности в интерференционной картине, возникающей при суперпозиции волнового поля объекта и когерентной ему опорной волны известной фазы. Последующая дифракция света на зарегистрированном распределении почернений в фотослое восстанавливает волновое поле объекта и допускает изучение этого поля при отсутствии объекта. Практически эта идея может быть осуществлена с помощью принципиальной схемы, показанной на рис. 267, а. Лазерный пучок делится на две части, причем одна его часть отражается зеркалом на фотопластинку (опорная волна), а вторая попадает на фотопластинку, отразившись от предмета (предметная волна). Опорная и предметная волны, являясь когерентными и накладываясь друг на друга, образуют на фотопластинке интерференционную картину. После проявления фотопластинки и получается голограмма — зарегистрированная на фотопластинке интерференционная картина, образованная при сложении опорной и предметной волн. Для восстановления изображения (рис. 267, 6) голограмма помещается в то же самое положение, где она находилась до регистрации. Ее освещают опорным пучком того же лазера (вторая часть лазерного пучка перекрывается диафрагмой). В результате дифракции света на интерференционной структуре голограммы восстанавливается копия предметной волны, образующая объемное (со всеми присущими предмету свойствами) мнимое изображение предмета, расположенное в том месте, где предмет находился при голографировании. Оно кажется настолько реальным, что его хочется потрогать. Кроме того, восстанавливается еще действительное изображение предмета, имеющее рельеф, обратный рельефу предмета, т. е. выпуклые места заменены вогну ыми, и наоборот (если наблюдение ведется справа от голограммы).
Рис. 267
Обычно пользуются мнимым топографическим изображением, которое по зритель ному восприятию создает полную иллюзию существования реального предмета. Рассматривая из разных положений объемное изображение предмета, даваемое голограммой, можно увидеть более удаленные предметы, закрытые более близкими из них (заглянуть за ближние предметы). Это объясняется тем, что, перемещая голову в сторону, мы воспринимаем изображение, восстановленное от периферической части голограммы, на которую при экспонировании падали также и лучи, отраженные от скрытых предметов. Голограмму можно расколоть на несколько кусков. Но даже малая часть голограммы восстанавливает полное изображение. Однако уменьшение размеров голо граммы приводит к ухудшению четкости получаемого изображения. Это объясняется тем, что голограмма для опорного пучка служит дифракционной решеткой, а при уменьшении числа штрихов дифракционной решетки (при уменьшении размеров голограммы) ее разрешающая способность уменьшается. Методы голографии (запись голограммы в трехмерных средах, цветное и панорамное голографирование и т. д.) находят все большее развитие. Применения голографии разнообразны, во наиболее важными, приобретающими все большее значение, являются запись и хранение информации. Методы голографии позволяют записывать в сотни раз больше страниц печатного текста, чем методы обычной микрофотографии. По подсчетам, на фотопластинку размером 32´ 32 мм можно записать 1024 голограммы (площадь каждой из них 1 мм2), т. е. на одной фотопластинке можно «разместить» книгу объемом свыше тысячи страниц. В качестве будущих разработок могут служить ЭВМ с топографической памятью, голографический электронный микроскоп, голографические кино и телевидение, топографическая интерферометрия и т. д. 1. Дисперсия света. Электронная теория дисперсии. Нормальная и аномальная дисперсии.
Дисперсией света называется зависимость показателя преломления л вещества от частоты v (длины волны l) света или зависимость фазовой скорости v световых волн (см. § 154) от его частоты v. Дисперсия света представляется в виде зависимости Следствием дисперсии является разложение в спектр пучка белого света при прохождении его через призму. Первые экспериментальные наблюдения дисперсии света принадлежат И. Ньютону (1672 г.). Рассмотрим дисперсию света в призме. Пусть монохроматический пучок света падает на призму с преломляющим углом А и показателем преломления п (рис. 268) под углом a1. После двукратного преломления (на левой и правой гранях призмы) луч оказывается отклоненным от первоначального направления на угол j.
Рис. 268 Из рисунка следует, что Предположим, что углы А и a1малы, тогда углы a2, b1и b2 будут также малы и вместо синусов этих углов можно воспользоваться их значениями. Поэтому a1/b1 = n, b2/a2 = 1/n, а так как b1 + b2 = A, то a2 = b2n = n(A - b1) = n(A - a1/n) = nA - a1, откуда
Из выражений (185.3) и (185.2) следует, что т. е. угол отклонения лучей призмой тем больше, чем больше преломляющий угол призмы.
Величина называемая дисперсией вещества, показывает, как быстро изменяется показатель прело мления с длиной волны. Из рис. 269 следует, что показатель преломления для прозрачных веществ с уменьшением длины волны увеличивается; следовательно, величина dn/dl по модулю также увеличивается с уменьшением l. Такая дисперсия называется нормальной. Как будет показано ниже, ход кривой n(l) — кривой дисперсии — вблизи линий и полос поглощения будет иным: n уменьшается с уменьшением l. Такой ход зависимости n от l называется аномальной дисперсией.
Из макроскопической электромагнитной теории Максвелла следует, что абсолютный показатель преломления среды где e — диэлектрическая проницаемость среды, m— магнитная проницаемость. В оптической области спектра для всех веществ m»1, поэтому Из формулы (186.1) выявляются некоторые противоречия с опытом: величина n, являясь переменной (см. § 185), остается в то же время равной определенной постоянной - Ö e. Кроме того, значения n, получаемые из этого выражения, не согласуются с опытными значениями. Трудности объяснения дисперсии света с точки зрения электромагнитной теории Максвелла устраняются электронной теорией Лоренца. В теории Лоренца дисперсия света рассматривается как результат взаимодействия электромагнитных волн с заряженными частицами, входящими в состав вещества и совершающими вынужденные колебания в переменном электромагнитном поле волны. Применим электронную теорию дисперсии света для однородного диэлектрика, предположив формально, что дисперсия света является следствием зависимости e от частоты wсветовых волн. Диэлектрическая проницаемость вещества, по определению (см. (88.6) и (88.2)), равна где æ — диэлектрическая восприимчивость среды, e0 — электрическая постоянная, Р — мгновенное значение поляризованности. Следовательно, т. е. зависит от Р. В данном случае основное значение имеет электронная поляризация, т. е. вынужденные колебания электронов под действием электрической составляющей поля волны, так как для ориентационной поляризации молекул частота колебаний в световой волне очень высока (v» 1015 Гц). В первом приближении можно считать, что вынужденные колебания совершают только внешние, наиболее слабо связанные с ядром электроны — оптические электроны. Для простоты рассмотрим колебания только одного оптического электрона. Наведенный дипольный момент электрона, совершающего вынужденные колебания, равен р = ех, где е — заряд электрона, х — смещение электрона под действием электрического поля световой волны. Если концентрация атомов в диэлектрике равна n0 то мгновенное значение поляризованности
2. Поглощение света. Закон Бугера-Ламберта. Поглощением (абсорбцией) света называется явление уменьшения энергии световой волны при ее распространении в веществе вследствие преобразования энергии волны в другие виды энергии. В результате поглощения интенсивность света при прохождении через вещество уменьшается. Поглощение света в веществе описывается законом Бугера*: (187.1) где I0 и I — интенсивности плоской монохроматической световой волны на входе и выходе слоя поглощающего вещества толщиной х, a — коэффициент поглощения, зависящий от длины волны света, химической природы и состояния вещества и не зависящий от интенсивности света. При х = 1/a интенсивность света I по сравнению с I0 уменьшается в е раз. Коэффициент поглощения зависит от длины волны l (или частоты w) и для различных веществ различен. Например, одноатомные газы и пары металлов (т. е. вещества, в которых атомы расположены на значительных расстояниях друг от друга и их можно считать изолированными) обладают близким к нулю коэффициентом поглощения и лишь для очень узких спектральных областей (примерно 10-12 — 10-7 м) наблюдаются резкие максимумы (так называемыйлинейчатый спектр поглощения). Эти линии соответствуют частотам собственных колебаний электронов в атомах. Спектр поглощения молекул, определяемый колебаниями атомов в молекулах, характеризуетсяполосами поглощения (примерно 10~10—10~7 м). Коэффициент поглощения для диэлектриков невелик (примерно 10-3 - 10-5 см-1), однако у них наблюдается селективное поглощение света в определенных интервалах длин волн, когда а резко возрастает, и наблюдаются сравнительно широкие полосы поглощения, т. е. диэлектрики имеютсплошной спектр поглощения. Это связано с тем, что в диэлектриках нет свободных электронов и поглощение света обусловлено явлением резонанса при вынужденных колебаниях электронов в атомах и атомов в молекулах диэлектрика. Коэффициент поглощения для металлов имеет большие значения (примерно 103 —105 см-1) и поэтому металлы являются непрозрачными для света. В металлах из-за наличия свободных электронов, движущихся под действием электрического поля световой волны, возникают быстропеременные токи, сопровождающиеся выделением джоулевой теплоты. Поэтому энергия световой волны быстро уменьшается, превращаясь во внутреннюю энергию металла. Чем выше проводимость металла, тем сильнее в нем поглощение света.
Поляризация света. Естественный и поляризованный свет. Закон Малюса. Поляризация света при отражении и преломлении на границе раздела двух диэлектрических сред. Закон Брюстера.
Свет представляет собой суммарное электромагнитное излучение множества атомов. Атомы же излучают световые волны независимо друг от друга, поэтому световая волна, излучаемая телом в целом, характеризуется всевозможными равновероятными колебаниями светового вектора (рис. 272, а; луч перпендикулярен плоскости рисунка). В данном случае равномерное распределение векторов Е объясняется большим числом атомарных излучателей, а равенство амплитудных значений векторов Е — одинаковой (в среднем) интенсивностью излучения каждого из атомов. Свет со всевозможными равновероятными ориентациями вектора Е (и, следовательно, Н) называется естественным. Свет, в котором направления колебаний светового вектора каким-то образом упорядочены, называется поляризованным. Так, если в результате каких-либо внешних воздействий появляется преимущественное (но не исключительное!) направление колебаний вектора Е (рис. 272, б), то имеем дело с частично поляризованным светом. Свет, в котором вектор Е (и, следовательно, Н) колеблется только в одном направлении, перпендикулярном лучу (рис. 272, в), называется плоскополяризованным (линейно поляризованным). Плоскость, проходящая через направление колебаний светового вектора плоскополяризованной волны и направление распространения этой волны, называется плоскостью поляризации. Степенью поляризации называется величина где Imax и Imin, — соответственно максимальная и минимальная интенсивности частично поляризованного света, пропускаемого анализатором. Для естественного света? Пропускаемого анализатором. Для естественного света Imax = Imin и Р = 0, для плоскополяризованного Imin = 0 и Р = 1. Естественный свет можно преобразовать в плоскополяризованный, используя так называемые поляризаторы, пропускающие колебания только определенного направления (например, пропускающие колебания, параллельные главной плоскости поляризатора, и полностью задерживающие колебания, перпендикулярные этой плоскости). В качестве поляризаторов могут быть использованы среды, анизотропные в отношении колебаний вектора Е, например кристаллы (их анизотропия известна, см. § 70). Из природных кристаллов, давно используемых в качестве поляризатора, следует от метить турмалин. Закон Малюса*: (190.1) где I0 и I — соответственно интенсивности света, падающего на второй кристалл и вышедшего из него. Следовательно, интенсивность прошедшего через пластинки света изменяется от минимума (полное гашение света) при a = p/2 (оптические оси пластинок перпендикулярны) до максимума при a = 0 (оптические оси пластинок параллельны). Однако, как это следует из рис. 274, амплитуда Е световых колебаний, прошедших через пластинку T2 будет меньше амплитуды световых колебаний E0, падающих на пластиду Т1.
Если пропустить естественный свет через два поляризатора, главные плоскости которых образуют угол а, то из первого выйдет плоскополяризованный свет, интенсивность которого I0 = 1/2Iест из второго, согласно (190.1), выйдет свет интенсивностью I = I0cos2a. Следовательно, интенсивность света, прошедшего через два поляризатора, откуда Imax = 1/2 Iест (поляризаторы параллельны) и Imin = 0 (поляризаторы скрещены).
|