Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Ядро и образ линейного оператора
Ядром линейного оператора
Ядро не пусто, так как содержит нулевой вектор. Ясно, что ядро – подпространство линейного пространства. Размерность этого подпространства называют дефектом линейного оператора. Образом линейного оператора
Образ не пуст, так как содержит нулевой вектор. Ясно, что образ – подпространство линейного пространства. Размерность этого подпространства называют рангом линейного оператора. Теорема. Сумма размерностей ядра и образа линейного оператора равна размерности линейного пространства. Доказательство. Пусть
По определению
Докажем линейную независимость этих векторов. Пусть
Подействуем нашим линейным оператором на обе части равенства. Получим
Система образующих a 1, …, as, b 1, …, br линейно независима, т.е. образует базис линейного пространства V/ K., поэтому s + r = n. ■
|