Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Метод Крамера решения СЛАУ






Рассмотрим СЛАУ, в которой число уравнений совпадает с числом неизвестных

(1)

Введем обозначения , , , …, . Здесь - определитель основной, квадратной матрицы СЛАУ, определитель получен из определителя заменой 1-го столбца столбцом свободных членов. Аналогично определитель получен из определителя заменой 2-го столбца столбцом свободных членов и т. д.

Теорема 1. (Крамер, Швейцария, 1704-1752) СЛАУ (1), определитель которой не равен 0, имеет единственное решение, определяемое формулами , .

Доказательство. Умножим 1-е уравнение системы (1) на алгебраическое дополнение к элементу матрицы - число . Уравнение 2 системы (1) умножим на алгебраическое дополнение к элементу матрицы - число , …, последнее уравнение системы (1) умножим на алгебраическое дополнение к элементу матрицы - число . Теперь сложим полученные уравнения. В полученном уравнении коэффициент при равен , т. е. равен , т. к. он равен разложению этого определителя по 1-му столбцу. Коэффициент при равен , т. е. он равен разложению по 1-му столбцу того же определителя, в котором первый столбец заменен вторым столбцом. Но определитель с двумя равными столбцами равен 0. Аналогично коэффициенты при , …, будут равны 0 и мы приходим к соотношению . Правая часть равна описанному выше определителю . Тем самым справедлива формула . Остальные из доказываемых формул выводятся аналогично.

Пример 1. Решите систему методом Крамера.

Вычислим определители , и . Теперь найдем неизвестные , .

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал