Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Дисперсия дискретной случайной величины. На практике часто требуется оценить рассеяние возможных значений случайной величины вокруг ее среднего значения






На практике часто требуется оценить рассеяние возможных значений случайной величины вокруг ее среднего значения. Например, в артиллерии важно знать, насколько кучно лягут снаряды вблизи цели, которая должна быть поражена.

На первый взгляд может показаться, что для оценки рассеяния проще всего вычислить все возможные значения отклонения случайной величины и затем найти их среднее значение. Однако такой путь ничего не даст, так как среднее значение отклонения, т.е. М[Х –М(Х)], для любой случайной величины равно нулю.. Это свойство уже было доказано ранее и объясняется тем, что одни возможные отклонения положительны, а другие – отрицательны; в результате их взаимного погашения среднее значение отклонения равно нулю. Эти соображения говорят о целесообразности заменить возможные отклонения их абсолютными значениями или их квадратами. Так и поступают на деле. Правда, в случае, когда возможные отклонения заменяют их абсолютными значениями, приходится оперировать с абсолютными величинами, что приводит иногда к серьезным затруднениям. Поэтому чаще всего идут по другому пути, т.е. вычисляют среднее значение квадрата отклонения, которое и называют дисперсией.

Дисперсией (рассеянием) дискретной случайной величины называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания:

D(X) = M [X – М(Х)].

 

Пусть случайная величина задана законом распределения

X x1 x2 xn
p p1 p2 pn

 

Тогда квадрат отклонения имеет следующий закон распределения:

[Х –М(Х)]2 [x1 –М(Х)]2 [x2 –М(Х)]2 [xn –М(Х)]2
p p1 p2 pn

 

По определению дисперсии,

D(X) = М[X –М (X)]2 = [x1 –М(Х)]2 * p1 + [x2 –М(Х)]2 * p2 + … + [xn –М(Х)]2 * pn

Таким образом, для того чтобы найти дисперсию, достаточно вычислить сумму произведений возможных значений квадрата отклонения на их вероятности.

 

Замечание. Из определения следует, что дисперсия дискретной случайной величины есть неслучайная (постоянная) величина.

Пример 2. Найти дисперсию случайной величины X, которая задана следующим законом распределения:

X      
р 0, 3 0, 5 0, 2

 

Решение. Найдем математическое ожидание: М(Х)= 1*0, 3 + 2*0, 5 + 5*0, 2 = 2, 3. Найдем все возможные значения квадрата отклонения:

[x1 –М(Х)]2 = (1 – 2, 3)2 = 1, 69;

[x2 –М(Х)]2 = (2 – 2, 3)2 = 0, 09;

[x3 –М(Х)]2 = (5 – 2, 3)2 = 7, 29.

Напишем закон распределения квадрата отклонения:

[Х –М(Х)]2 1, 69 0, 09 7, 29
p 0, 3 0, 5 0, 2

 

По определению,

D (Х) = 1, 69*0, 3 + 0, 09*0, 5 + 7, 29*0, 2 = 2, 01.

Вычисление, основанное на определении дисперсии, оказалось относительно громоздким. Далее будет указана формула, которая приводит к цели значительно быстрее.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал